Hochschule Rhein-Waal

Rhine-Waal University of Applied Sciences

Faculty of Communication and Environment
Prof. Dr. Frank Zimmer

M.Sc. Florian Krebs

Exploration of Intel Resource
Director Technology on PikeOS

Bachelor Thesis
by

Naveen Narayanan



Abstract

Systems with mixed-criticality suffer from issues like noisy neighbor caused by a mis-
behaving application hogging shared resources, thereby, affecting the latency of appli-
cations with a higher level of criticality. Such issues are of substantial importance in
mission-critical systems such as the field of avionics where failure to meet hard dead-
lines can be fatal. Intel introduced a framework called Intel Resource Directory Technol-
ogy (IRDT) which provides mechanisms to mitigate such issues by enabling allocation
and monitoring of shared resources such as cache and memory. PikeOS, being a real-
time system, will benefit from having support for IRDT, hence, a driver named CAT Kernel
driver (ICAT) has been implemented, which drives IRDT and exposes an API that can
be used by applications to monitor usage of and allocate shared resources. Using the
API, applications can make intelligent decisions about how they would like to access Last
Level Cache (LLC) in order to improve performance. Additionally, avionics standards im-
pose stricter regulations on the usage of cache in systems with additional logical cores.
ICAT helps with improving the Worst Case Execution Time (WCET) analysis by providing
deterministic access to the desired portions of LLC.

Monitoring of shared resources is explored for the explicit purpose of profiling applica-
tions. Runtime analysis using such features helps with the analysis of the program in
terms of both determinism and performance.

Additionally, the overall design of IRDT, and Performance Monitoring Unit (PMU), from the
perspective of ICAT, is described along with the rationale behind certain choices which
influenced the internal design of the driver itself. The different use-cases and the results
of instrumentation and analysis of ICAT on Intel x86_64 platforms which support IRDT are
detailed.

keywords: Real-Time OS, Cache Allocation Technology, Intel® x86_64, PikeOS, LLC,
Intel® RDT



Contents

1 Introduction
Motivation . . . . . . ... .. ..
1.2 Problem Statement . . . . . . ..

1.1

1.3 Methodology
1.4 Thesis structure

2 Related Work

3 PikeOS

3.1

PikeOS Internals

3.1.1
3.1.2
3.1.3
3.1.4

3.1.5

3.1.6

ASP . . ... ... L.
PSP . .. .........
PSSW . ..........
Process Management . .
3.1.41 Threads. . . ..
3.1.4.2 Scheduling . . .
Memory Management . .

3.1.5.1 Mapping Attributes . . . . . ... ... L

Kernel Driver Framework

4 Caches in SMP Systems

4.1

Cache Fundamentals
Cacheline ... ... ..
Cache in Operation . . .
Replacement Policies . .
Write Policies . . . . . ..
4.1.41 Write-Through .
4.1.4.2 Write-Back . . .
4.1.4.3 Write-Allocate .
Associative Cache . . . .
Cache Flushing . . . . ..

4411
412
413
4.1.4

415
4.1.6

5 Intel Resource Director Technology

5.1

5.2

Cache Allocation Technology
CAT Architecture . . . . .
Capability Bit Mask . . . .
Discovery . . . ... ...
Configuration . . . . . ..
Usage . . . ... ... ..
Memory Bandwidth Allocation
Discovery . . . ... ...

5.1.1
5.1.2
5.1.3
514
5.1.5

5.2.1
5.2.2

Configuration and Usage



5.3 Cache Monitoring Technology . . . . . . . . . . . . . ... .. .. ... ...
Discovery . . . . . . e

5.3.1

5.3.2
5.3.3

5.3.1.1

CMT .

Configuration . . . . . . . . . L

Usage

6 Performance Monitoring Unit
6.1 Configuration

6.2 Discovery

6.2.1

6.3 Usage

Bit layout of IA32_.PERFEVTSELMSR . . . . . . ... ... .....
6.2.2 Pre-defined Architectural Performance Events . . . . . ... . ...

7 Implementation of ICAT

7.1 |ICAT as a KDEV
Modules

711

7.1.2

7.1.3

8 Evaluation of ICAT

9 Conclusion
9.0.1

7.1.1.1
71.1.2
7.1.1.
7.1.1.
7.1.1.
7.1.1.
71.1.7

(o236 IF ~ i &b)

Module:irdt . . . . . ... ...
Module:cat. . . . ... ... ... .. .. ...
Module:log. . . . . . . . . . .
Module: msr . . . . . . ...
Module:pmu . . . . . . . .
Module:cmt . . . ... .. ... .. ... .
Module: main . . . . ... .. .. ...

IOCTL interface . . . . . . . . . . . .

7.1.2.1
7.1.2.2
7.1.2.3
71.24

ICAT.ASSOC . . .. . .
ICATMON . . .. ... .
ICAT.STAT . . . .
ICATJOIN . . .. oo

Use Cases . . . . . . . o o s,

7.1.3.1
7.1.3.2
7.1.3.3
7.1.3.4
7.1.3.5

Initial discovery . . . . ...
Static Configuration . . . . .. ... ... ... .. ...,

Analysis of cacheusage . . ... ..............

Dynamic configuration. . . . . . ... ... ... . ...
Caveats. . . . . . . . . . .. .o

Future Work . . . . . . . . .

25
25
26
26
27
27

28
28
28
29
32
34
34
34
37
37
42
42
44
45
46
47
47
47
47
48
48

49

57



LIST OF ABBREVIATIONS

API Application Programming Interface.
ASP Architecture Support Package.
CAT Cache Allocation Technology.
CBM Capability Bit Mask.

CLOS Class of Service.

CMT Cache Monitoring Technology.
FSB Front Side Bus.

GP General protection fault.

1A-32 Intel Architecture 32-bit.

ICAT CAT Kernel driver.

IPC Inter-Process Communication.
IRDT Intel Resource Directory Technology.
KDEV Kernel driver Framework.

LLC Last Level Cache.

LRU Least Recently Used.

MBA Memory Bandwidth Allocation.
MBM Memory Bandwidth Monitoring.
MCP Maximum Controlled Priority.
MMU Memory Management Unit.
MSR Model-Specific Register.

PMU Performance Monitoring Unit.
PSP Platform Support Package.
PSSW PikeOS System Software.
RMID Resource Monitoring ID.

RP PikeOS Resource Partition.

SMP Symmetric Multi-Processing.
TMAM Intel Top-Down Microarchitecture Analysis Method.
TP PikeOS Time Partition.

UID User ID.

WA Write-Allocate policy.

WB Write-Back policy.

WCET Worst Case Execution Time.
WT Write-Through policy.



List of Figures

3.1 Partitioned System (Kaiser & Wagner, 2007, p.51) . . . .. ... ... ... 6
4.1 Location of Cache (Schimmel, 1994, p.24) . . . . . . . ... ... ... ... 11
7.1 Structure of ICAT . . . . . . . . e 29
7.2 Discovery of ICAT . . . . . . . . . . 47
8.1 Allocation of L3 LLC vs CBM (overlapping) . . . ... ... ... ...... 49
8.2 CBM (overlapping) and L3LLCusage . ... ... .. ... ... ...... 50
8.3 CBM (isolated)and L3 LLCusage . ... .. ... ... ... .. ...... 50
8.4 L2LLCHIitsvsCBM . . . . . . . . . . . . 51
85 CBMandL2LLCHits . ... ... ... .. .. . . ... 51
8.6 Allocationof L3LLCvslsolatedCLOS . . . . ... ... ... ........ 52
8.7 CBM  (lsolated)and L3 LLCusage . . ... ... ... .. ... ....... 52
8.8 Allocation of L3 LLC vs Overlapping CLOS . . . . ... ... ... ..... 53
8.9 CBM (Overlapping) and L3 LLCusage . . . . .. ... ... .. ... .... 53
8.10 lteration vs L3 LLC usage (without CAT) . . . . . . . . ... ... ... ... 54
8.11 Noisy-neighbor scenario-problem . . . . . ... ... ... .. ....... 54
8.12 lteration vs L3 LLC usage (With CAT) . . . . . . . . . . . .. ... .. ... 55

8.13 Noisy-neighbor scenario - solution . . . . . . ... ... ... ........ 55



List of Tables

5.1 Default(Intel, 2025b, p.19-54)
5.2 Overlap(Intel, 2025b, p.19-54)
5.3 lIsolated(Intel, 2025b, p.19-54) . . . . . . . . ... 18
5.4 CMT Event Types(Intel, 2025b, p.19-49)

6.1 UMask and Event Select Encodings(Intel, 2025b, p.21-18)



Chapter 1

Introduction

On mixed-criticality systems such as automobiles, the possibility of multiple levels of crit-
ical software running, especially in this day and age, has risen owing to the multitude
of sub-components oriented towards convenience as well as safety. For instance, con-
sider the case of a media center running at a significantly lower level of criticality than
other safety features. If the software that drives the media center were to misbehave,
although process isolation prevents one process from bringing down the entire system, it
can definitely exhaust shared resources such as cache, memory bandwidth etc., thereby,
affecting the access times of other cores assigned to safety critical applications which are
running at a higher level of criticality. Such disturbance is of significance in Symmetric
Multi-Processing (SMP) systems which have more than one CPU trying to access shared
resources leading to contention and other side-effects. Analysis and study of such dis-
turbances is not a straight-forward process especially when performed on platforms with
no hardware support. Hence, these topics are explored with the help of IRDT on Intel
x86_64 based platforms.

Allocation of shared resources in mixed-criticality systems for the purpose of avoiding
interference, contention and other side-effects rising from multiple processors trying to
access a shared resource is the topic of concern. Such systems suffer from issues like
noisy-neighbor which inadvertently affects the behavior of applications running at a higher
level of criticality. Such problems are more common in cloud data centers due to the
extensive use of shared resources (Lorido-Botran et al., 2017, p.188). Lorido-Botran et
al. (2017) argue that noisy-neighbor effect is basically an anomaly which restricts other
partitions from using the shared resources and pursues an approach which measures
different lags in the system. The approach that is pursued in this research is one that
utilizes hardware frameworks such as IRDT.

IRDT is a framework provided by Intel for the purpose of allocation and monitoring of
shared resources. It has the following subcomponents: CAT, CMT, MBA etc. which are
used for the allocation and monitoring of resources such as last level cache, memory
bandwidth etc. Additionally, the implementation of ICAT which is a kernel driver writ-
ten on PikeOS for the explicit purpose of driving IRDT is discussed. Ultimately, it does
some analysis of cache statistics and possible use-cases in avionics environments which
warrant deterministic access to cache.

1.1 Motivation

Jean et al. (2012, chap. 9) discuss the requirements for embedded systems on aircraft
which include specifications about SMP environments that involves caches. Jean et al.



(2012, p.86) argues that the use of shared caches in embedded aircraft systems warrants
solutions to the following problems:

* Prediction of cache content which deals with accesses to cache being deterministic
(Jean et al., 2012, p.86).

* Integrity of cache content (Jean et al., 2012, p.87).

+ Impact of concurrent access in SMP environments which deals with cache co-
herency (Jean et al., 2012, p.87).

Prediction of cache content can be accomplished in multiple ways. It can be approached
from the perspective of the programmer if there is full visibility into what the program is
doing at any moment in time. However, this is not feasible in SMP environments. Another
approach, according to Jean et al. (2012, p.88), would be use cache content prediction
algorithms, however, such algorithms have not been used in the industrial world yet. The
other classical approaches to this problem include Partitioning of cache and Configuration
of Cache as SRAM (Jean et al., 2012, p.89). One of these approaches, namely, cache
partitioning is supported by IRDT on Intel x86_64 platforms.

1.2 Problem Statement

The approach of using cache partitioning in order to improve deterministic access to
shared caches and prediction of cache content is explored using IRDT on PikeOS. Cache
partitioning is defined as the ability to allocate specific areas of cache to one core by
Jean et al. (2012, p.89). As a result, the respective CPU is allowed to allocate data and
instructions in the respective portion of the shared cache. This can be further extended
to allocating a specific portion to multiple CPUs which is what is implemented by Intel
using IRDT. Additionally, IRDT allows for different configurations of shared cache such as
isolated and shared access.

Apart from that, it allows for monitoring of shared resources which can be used to make
runtime decisions about the allocation of cache associated with a specific CPU or set of
CPUs. The implementation of such a driver that handles IRDT on PikeOS is called ICAT;
the exploration of IRDT for the purpose of cache partitioning in order to improve WCET
and reduce contention on mission-critical systems such as airborne systems is the ap-
proach taken to address said problem. Hence, the real question is whether an approach
exists, at least on Intel based platforms, to attack the problem of cache partitioning.

1.3 Methodology

As discussed earlier, the problem of cache partitioning can be solved by utilizing hardware
frameworks such as IRDT on Intel platforms. Although Cache Allocation Technology
(CAT) in IRDT has been used to achieve fairness in other OSes like Linux as discussed
by Selfa et al. (2017, p. 194), such techniques have not been used for the purpose of
cache prediction on PikeOS yet.

The first step of this approach is to implement a device driver on PikeOS which drives
IRDT. The driver should be capable of handling the partitioning of last level cache such
as L3/L2. Once this has been accomplished, the next step is to be able to verify whether
the allocation is successful.

Since Intel provides Cache Monitoring Technology (CMT) as part of IRDT, it can be used
to monitor the cache used by a CPU or set of CPUs in a fine granular manner. Having

2



both of these functionalities should be enough to partition the cache and monitor usage.
However, the possibility of being able to alter the cache allocated to a specific CPU or set
of CPUs during runtime can be explored as well.

1.4 Thesis structure

Chapter 2 discusses related work in the field giving a glimpse into what could be done
using CAT on PikeOS. Since the prime motive is the implementation of a driver, ICAT, that
makes use of architectural components like IRDT, PMU, and embedded environments like
PikeOS, it would help the prospective reader alleviate the coarse terrain of systems pro-
gramming if the programming environment were to be introduced first. Hence, Chapter 3
deals with the intricacies of PikeOS as a programming environment and how it contrasts
with other OSes.

Secondly, a primer on Cache is provided in Chapter 4 owing to its importance in SMP
environments and for a bit of history. It introduces concepts such as invalidation, flushing
and cache-coherency which are important in understanding how the hardware is able to
achieve better performance using caches and how OSes are able to leverage this piece
of hardware to work efficiently in a multi-threaded environment.

Once these primary topics are covered, IRDT, its architecture and usage is discussed in
detail in Chapter 5. Chapter 6 covers the architecture of PMU and its usage.

Ultimately, this leads to Chapter 7 which discusses the implementation of ICAT, that
makes use of all the other components that were discussed prior, in meticulous detalil
along with its use-cases and some empirical information of the same in certain microar-
chitectures and platforms is discussed in Chapter 8. Chapter 9 talks about the overall
result of the research and how it can be improved so as to address other issues related
to shared resources.



Chapter 2

Related Work

Intel (2015) introduced CAT as a solution to the problem of having to invalidate and evict
cache lines on systems with additional cores, thereby, negatively impacting the perfor-
mance of latency sensitive workloads. The solution allowed system administrators to
allocate certain portions of cache to a CPU or set of CPUs. This problem came into be-
ing due to the emergence of additional logical cores on processors which accelerated the
rise in the number of threads running in parallel (Intel, 2015, p.5). Since LLC was shared
among CPUs, invalidating and flushing the former inadvertently caused significant por-
tions of L1 and L2 caches to be evicted too. Systems which handled a higher frequency
of interrupts were affected since the interrupt service routines had to be fetched again
post cache eviction (Intel, 2015, p.5).

Kim et al. (2019) provides evidence for the usage of CAT and IRDT, indirectly, for the
purpose of predicting application performance by training a model using the profiling data
obtained using Intel Top-Down Microarchitecture Analysis Method (TMAM). This research
argues that the predictive management technique which utilized CAT in runtime outper-
forms static cache configuration by computing the optimal cache size required for applica-
tions. Our implementation of ICAT exposes the API that can be used to implement such
mechanisms on PikeOS. PikeOS, being a real-time OS, relies heavily on hard deadlines
which have to be met. Hence, ICAT enhances it by providing an option to mitigate issues
such as those described above especially when handling latency sensitive workloads.

Farshin et al. (2019) talks about utilizing LLC using a memory management scheme
called slice-aware memory management for the purpose of keeping frequently used data
in LLC for faster access. This research takes a stab at improving network 1/0O by using a
CacheDirector which places the header of a network packet in LLC that is closest to the
CPU which is processing said packet. Cache-aware memory management presented in
this research is a likely candidate for future work which can be accomplished by utilizing
ICAT on PikeOS. Fast packet processing, as described in this research, is another vi-
able use case for CAT which can help with mitigating noisy neighbor effects and improve
performance.



Chapter 3

PikeOS

PikeOS is a Real-time operating system(RTOS) based on L4 microkernel authored by
Jochen Liedtke. Liedtke (1995) argues that a microkernel differs from a monolithic ker-
nel since it tries to minimize the kernel proper, which is the common part required for
all programs to run. Additionally, he states that the microkernel approach provides for a
much more modular design which is way more flexible and tailorable. The programming
environment merely comprises of a kernel and a virtualization platform, PikeOS, coupled
with an Eclipse-based IDE known as CODEOQO. PikeOS is currently being developed by
SYSGO GmbH. The IDE is optional as the build environment is almost entirely composed
of makefiles and a toolchain which are available in binary form. Since modern applica-
tions are mostly built on RTOS, there are other open source variants such as RTLinux
and RTEMS which provide similar environments (Straumann, 2001, p.1). RTOS is usu-
ally used in situations which warrant rigid timing requirements and deterministic behavior
(Guan et al., 2016, p.19). Guan et al. (2016) argue that the latencies of thread creation,
deletion, switching etc. should be predictable, regardless of the number of threads in
RTOS which is why it is different from general purpose OS.

The reason for this chapter to be inordinately longer is one that is related to the Modern
Age, for those who know Unix™ would find PikeOS atypical owing to it primarily being a
hypervisor. So, this chapter shall attempt to abridge the gap between a monolithic kernel
like Unix™ and a microkernel such as PikeOS.

Unlike Unix™, PikeOS is not a general purpose operating system by design, although, it
can be used as one. Owing to its innate support for virtualization, PikeOS enforces the
concept of partitions on which processes are run. Processes can be of different kinds:

+ PikeOS Native (SYSGO, 2025d, p.191)
+ POSIX (SYSGO, 2025d, p.22)

« APEX (SYSGO, 2025d, p.22)

* P4-Linux (SYSGO, 2025d, p.22)

The partitions are called Virtual Machines (VM) as the processes which run on them can
be full-fledged operating systems (SYSGO, 2025d, p.12).

The PikeOS microkernel consists of three parts: a kernel proper which consists of the
hardware independent portion, an architecture dependent portion (ASP), and a platform
dependent portion (PSP) (SYSGO, 2025d, p.19). The kernel proper provides services
such as process abstraction, memory management, driver frameworks (kernel and user-
level), IPC, interrupt management, etc., while utilizing the ASP and PSP for specific func-
tionality, that is provided by the architecture and platform, respectively (SYSGO, 2025d,
p.20).



The figure shown below depicts a partitioned system running on PikeOS:

RT-OS non-RT OS RT-OS

System Software

PikeOS p-Kernel

Figure 3.1: Partitioned System (Kaiser & Wagner, 2007, p.51)

As illustrated, OSes with varying levels of criticality can be run simultaneously using par-
titions. It is also possible to run simple applications instead of OSes in the partitions.
Kaiser & Wagner (2007) confirms that although the original implementation of PikeOS
was based on Liedtke (1995)’s design, it was written entirely in C and the programming
interface was modified owing to several issues.

Time partitioning is another mechanism provided by PikeOS for the purpose of enforcing
hard deadlines (SYSGO, 2025d, p.28). It can be used to avoid starvation as well as to
ensure that an application runs for a predefined period of time.

The simplest of PikeOS Time Partition (TP) configurations allows for a certain period
of time to be consumed by each of the partitions. For instance, if there are 3 PikeOS
Resource Partition (RP)s, RP1 runs first, RP2 next, and, ultimately, RP3 (SYSGO, 2025d,
p.28). However, the versatility of TP in PikeOS does not end there. There is no need to
have a one to one relationship between resource partitions and time partitions (SYSGO,
2025d, p.28). It can be inferred that RP can be mixed and matched with TP (SYSGO,
2025d, p.28). Secondly, the period of time for which a TP runs is not a property of TP.
This property, although non-intuitive, calls for some interesting configurations.

As a consequence of this design, a time partition can have multiple RPs running under
different windows (SYSGO, 2025d, p.28). A window is an abstraction for the period of
time for which the RP is run (SYSGO, 2025d, p.28). As one can imagine, such con-
figurations impose stricter regulations on access latency which is why cache allocation
technologies like ICAT is beneficial to RTOSes like PikeOS.

Another important aspect of PikeOS is the different kinds of environment it provides which
is referred to as PikeOS Personalities (SYSGO, 2025d, p.22). They basically represent
environments with different Application Programming Interface (API) and runtime environ-
ments which is expected by certain pieces of software (SYSGO, 2025d, p.22). Supported
personalities include POSIX (IEEE, 2004), ARINC 653 (ARINC, 2010) used by software
that is conformant to POSIX standard, ARINC standard, respectively, and P4Linux for
running Linux on PikeOS (SYSGO, 2025d, p.22).

3.1 PikeOS Internals

This section shall describe the internals of PikeOS pertaining to bootstrapping & kernel
initialization, memory management, process creation, and device drivers. It talks about
the following: ASP, PSP, PSSW, Process Management, Threads, Scheduling and KDEV
framework. In brief, ASP takes care of the architecture specific component, PSP takes
care of the platform specific component, and, PSSW is the root task. All of the compo-
nents are detailed in the following sections.



3.1.1 ASP

The Architecture Support Package (ASP) consists of the architecture dependent part of
the kernel (SYSGO, 2025d, p.20). ASP is responsible for handling Exception Manage-
ment, data transfer between address spaces and architecture dependent initialization of
sub-components (SYSGO, 2025d, p.20).

Secondly, handling of exceptions on any architecture is an extremely involved aspect of
virtualization, especially so, in PikeOS (SYSGO, 2025b, pp.114-115).

Address space management during bootstrapping is handled by the ASP. On top of that,
context management which comes into play during preemption of a process is dependent
on the architecture and, hence, falls on the ASP as well (SYSGO, 2025b, pp.114-115).

Additionally, there are several security related quirks and hacks which are implemented
in the ASP due to its hardware dependent nature (SYSGO, 2025b, p.114).

3.1.2 PSP

The Platform Support Package (PSP), with the help of ASP, is responsible for bootstrap-
ping the OS (SYSGO, 2025d, p.21). It handles the initialization of various subsystems
before finally handing off control to the kernel (SYSGO, 2025c, p.21). From the program-
mer’s perspective, it isolates components of PikeOS that are dependent on the board at
both object and source code levels. Some of the subcomponents it initializes includes:
interrupts, hardware timers, console, memory, etc. Additionally, caches are setup by the
PSP (SYSGO, 2025d, p.21).

3.1.3 PSSW

PikeOS System Software (PSSW) is analogous to init in Unix™ world in the sense that
it is the first process which starts to run in usermode (Neville-Neil, McKusick & Watson,
2014, p.51). lts responsibilities include reading VMIT, initializing the partitions, Inter-
Process Communication (IPC) and health monitoring (SYSGO, 2025d, p.21). PikeOS
has no notion of dynamic process creation. This aspect is handled statically using xml-
based configuration. It provides several services related to the aforementioned setup
during runtime.

3.1.4 Process Management

Processes are an important abstraction in Operating systems; PikeOS relates every pro-
cess in userland to a task in kernelspace. Userspace programs spawned by PSSW are
called processes (SYSGO, 2025d, p.46). The process of spawning processes by PSSW
involves the following:

+ Allocation of task from partition’s allocated task pool (SYSGO, 2025d, p.46)
* Mappings configured in VMIT are realized (SYSGO, 2025d, p.46)

» Configured number of child tasks are donated to the respective process (SYSGO,
2025d, p.46)

A task is simply an abstraction for an address space and a set of schedulable entities
(SYSGO, 2025d, p.49). PSSW is the first task which is spawned and it creates the rest
of the tasks based on the configuration provided in VMIT.



A task can enter several states during its lifetime such as: passive, active, activated,
started, and zombie (SYSGO, 2025d, p.51). It has a Maximum Controlled Priority (MCP)
which determines when it gets scheduled in and out. It has an attribute which dictates
the maximum number of threads it can spawn. And another attribute, CPU mask, which
dictates the set of CPUs that will schedule the said task (SYSGO, 2025d, p.49-50). Apart
from that, there are other attributes which dictate other abilities of the task and, lastly, it
has a task ID (SYSGO, 2025d, p.49).

The root task, PSSW, which has a task ID of 1, is responsible for running other tasks
(SYSGO, 2025d, p.50). Not only does it run other tasks, it donates the required resources
too (SYSGO, 20254, p.50).

3.1.4.1 Threads

Thread is an abstraction for the component of the task which gets scheduled (SYSGO,
2025d, p.59). As discussed earlier, a task can have more than one thread. In the same
vein as a task, a thread has a number which identifies itself, a User ID (UID) which is
a combination of task id and thread number, a state such as: current, waiting, ready,
stopped, and inactive, a priority which can not be higher than that of the task’s MCP, an
affinity mask which determines the set of CPUs that might run said thread, and an as-
signed processor which represents the current CPU the thread is scheduled on (SYSGO,
2025d, p.59-61).

Thread affinity plays an important role in how PikeOS manages computational resources.
So does it play an important role in the subject of this paper. In SMP systems, a set of
CPUs can be assigned to a partition statically using CpuMask attribute which is avail-
able for each partition (SYSGO, 2025d, p.67). This entitles the threads running on each
partition to move freely among the available CPUs (SYSGO, 2025d, p.67).

During runtime, threads can inquire and change their own affinity using the following
syscalls (SYSGO, 2025a, p.242-245):

pd4_thread_get_affinity - Get current CPU affinity
pd4_thread_set_affinity - Set current CPU affinity
pd4_thread_ex_affinity - Get and Set CPU affinity

Once the change in affinity is made, the respective thread gets migrated over to the
desired CPU.

3.1.4.2 Scheduling

The scheduler dictates which process gets scheduled in and out. In PikeOS, the priority,
the probability of getting scheduled, is directly proportional to the value assigned to a
thread’s priority i.e. the higher the thread priority the more likely it is for the thread to get
scheduled (SYSGO, 2025d, p.79).

The scheduler is awakened when a state change occurs. A state change can occur due to
a couple of reasons such as a time-partition expired, a thread went to sleep, an interrupt
occurred etc (SYSGO, 2025d, p.79).

The awakened scheduler is asked to make a decision on the thread to be run. This
decision is made with the help of a prioritized FIFO dispatcher (SYSGO, 2025d, p.79).
When a thread changes state and becomes runnabile, it is placed at the end of a ready
list that belongs to the respective priority (SYSGO, 2025d, p.79). Every priority has its



own ready list. The scheduler then picks the first thread from the ready list of the highest
priority (SYSGO, 2025d, p.79). This implies that the thread with the highest priority will
run indefinitely if it does not yield. In other words, it can easily starve off other threads if
care is not taken.

The other two elusive cases include the case of a thread changing its own priority and the
case of a thread’s priority altered by another. In the first case, the thread will be placed
at the beginning of a ready list for the new priority (SYSGO, 2025d, p.83). And when a
thread changes the priority of another, the thread will be placed at the end of a ready list
for the new priority (SYSGO, 2025d, p.83). This implies that a thread changing its own
priority is more likely to get scheduled than one that had its priority changed by another
(SYSGO, 2025d, p.83).

The scheduler used in PikeOS warrants the user to be aware of the scheduling policy and
configure the system accordingly in order to avoid starvation as the scheduler does not
inherently care about fairness unless time partition is used.

3.1.5 Memory Management

Like any modern operating system, PikeOS utilizes a Memory Management Unit (MMU)
to make use of a virtual address space on which user processes are run (SYSGO, 20254,
p.88). Invalid accesses to memory, due to access permissions or invalid translation, will
be met with page faults which is an exception thrown by the hardware itself (SYSGO,
2025d, p.88).

Every task has its own virtual address space (SYSGO, 2025d, p.88). Virtual to physical
memory mapping can be made anywhere within the user addressable range and the
translation is done by the MMU (SYSGO, 2025d, p.88).

Mappings can only be manipulated at a granularity level of P4_PAGESIZE which is 4096
bytes on x86-64 (SYSGO, 2025b, p.96). The unit of mapping is called a page.

3.1.5.1 Mapping Attributes
The following attributes dictate various aspects of a mapping:
Task ID represents the task to which the mapping belongs (SYSGO, 2025d, p.88)

Phy Page represents the physical page to which the mapping refers (SYSGO, 2025d,
p.88)

Access Permissions represents 3 different permissions (SYSGO, 2025d, p.88): P4_M_READ
for read,
P4_M_WRITE for write, P4_M_EXEC for execute.

Cache Attributes represents the caching scheme used for the mapping.
P4 M_C_ENABLE enables caching; P4 M_C_WRITEBACK is used to select be-
tween write back and write through caching; P4 M_C_PREFETCH is used to en-
able prefetches and speculative loads; P4_.M_C_COHERENCY is used to enforce
memory coherency (SYSGO, 2025d, p.89).



3.1.6 Kernel Driver Framework

Kernel driver Framework (KDEV) allows for 1/O drivers, which are linked against the
PikeOS kernel proper, to be able to run with supervisor access (SYSGO, 2025d, p.178).
PikeOS kernel drivers are generally faster since they run in kernelspace and hence don’t
require a syscall instruction to make use of some functionality provided by the kernel.
The downside is that they should be implemented with care owing to it being executed in
kernelspace which has fewer restrictions.

The interface provided by kernel drivers to a prospective user is called a gate. The func-
tionality provided by the gate depends on the implementation of the driver and the ser-
vices provided (SYSGO, 2025d, p.178). The bare minimum functionality provided by a
generic driver would include the following:

» vm_open which would open the respective gate; allocate a gate descriptor (SYSGO,
2025d, p.178)

» vm_close which would close the respective gate; free the respective descriptor
(SYSGO, 2025d, p.178)

« vm_read which would allow the user to read data from the device (SYSGO, 20254,
p.178)

« vm_write which would allow the user to write data to the device (SYSGO, 2025d,
p.178)

» vm_ioctl which can be used by the driver to provide some specific functionality
(SYSGO, 2025d, p.178)

Gate providers, as stated above, should be linked against the kernel and PikeOS toolchain
achieves this using a kernel fusion project which fuses the driver with the kernel (SYSGO,
2025d, p.180). The resultant kernel is then used along with the userspace application,
using an integration project, which makes use of the of kernel driver.

This concludes the discussion about the programming environment that PikeOS provides.
The next chapter deals with the characteristics of Cache and the rationale for its exis-
tence.

10



Chapter 4

Caches in SMP Systems

This chapter discusses the importance of cache on SMP systems, however, one needs
to understand the rationale behind its implementation in order to fathom its usage.

The implementation of cache stems from the idea that code is usually executed sequen-
tially and most of the time only a subset of the program’s code is used repeatedly. In
other words, cache is able to improve system performance by exploiting locality of refer-
ence (Schimmel, 1994, p.24). This property of programs can be exploited to speed up
system performance by storing the program’s current locality in a kind of memory which
is faster than main memory - cache (Schimmel, 1994, p.24).

CPU Registers —| Cache —{Main Memory — Disk

Figure 4.1: Location of Cache (Schimmel, 1994, p.24)

Being only a component in the chain of memories, cache lies in the middle of the spec-
trum where at one end lies the fastest (registers) and the other end lies the slowest (disk).
The cost of access increases as shown above from disk to registers (Schimmel, 1994,
p.24).

There are two types of localities: Temporal and Spatial. Temporal locality is the prop-
erty that programs are likely to reuse recently referenced items (Schimmel, 1994, p.25).
Consider the case of an operating system like PikeOS, ultimately what runs is a loop
which calls the scheduler. The scheduler chooses a program to run and when it yields
it chooses another one based on some specification and runs it. From a very abstract
point of view, most gui applications also seem to do the same thing; they wait till they are
asked to do something specific and then performs the desired operation. In such cases,
a small subset of components are reused and, hence, referenced repeatedly.

Spatial locality is the property that programs are likely to reference items that are near
previously referenced items (Schimmel, 1994, p.25). Sequential execution of programs
causes items which are closer to previously used items to be referenced and reused.
Consider the case of arrays in C, items referenced are adjacent to those previously used.
And, on subsequent iterations, the next adjacent element is referenced (Schimmel, 1994,
p.25).

The difference in speed between the CPU and the main memory can cause the CPU to
be limited to the speed of main memory. If the speed of main memory is considerably
low, this would indeed reflect in degraded performance and increasing the CPU speed

11



would not have any significant impact at all (Schimmel, 1994, p.25). This is the rationale
for having a relatively smaller but faster memory, in the memory hierarchy, which would
offset the imbalance in speed between the CPU and the main memory (Schimmel, 1994,
p.25).

4.1 Cache Fundamentals

Caches are found on all kinds of systems ranging from PCs to supercomputers. They
are usually contained within the CPU or MMU as the proximity to the CPU reduces the
access time between the CPU and the cache (Schimmel, 1994, p.26). Cache can be
found in many sizes ranging from a few KB to MB. The larger the cache the better the
performance owing to the fact that a larger locality of reference is available for faster
access (Schimmel, 1994, p.26). Although, this is the true when comparing systems with
cache to those with no cache, performance is also dependent on other factors such as
the behavior of the program itself. This is illustrated in Chapter 8.

Caches on Intel Architecture 32-bit (IA-32) were implemented due to the frequent core
stalls caused due to the CPU trying to access the prefetch queue at a fairly high frequency
and the main memory being slow, thereby, causing the prefetch queue to get exhausted
(Shanley, 2005, p.386). Secondly, in case of a branch instruction such as an interrupt
or exception, the CPU would have to flush the prefetch queue and stall until the Front
Side Bus (FSB) completes code fetch (Shanley, 2005, p.386). It would have to do the
same thing in case of a memory load since the data would have to be fetched from main
memory and placed in the target register. In a similar vein, it would have to stall until a
write to main memory finished (Shanley, 2005, p.386).

Caches are usually designed in such a way that they are transparent to both the systems
programmer and the user. This helps with moving programs from one system to another
with a different cache hierarchy without any considerable changes, thereby, making it
portable (Schimmel, 1994, p.26). However, on certain architectures such as ARM this
is not the case. ARM uses a weak memory model which requires the developer to use
certain instructions to flush or invalidate the cache so as to maintain cache coherency
(Sloss, 2004, p.423).

The portions of memory which reside in cache are called cached and this is accomplished
by tagging the data in the cache with its main memory address. This makes it possible for
the hardware to check if said data is in memory by checking the tags (Schimmel, 1994,
p.27).

When the CPU issues a main memory address it wishes to fetch, it is sent to the cache
and the search for the said address is performed by the hardware (Schimmel, 1994, p.27).
If the search succeeds, it is called a hit and when it fails, it is called a miss. The frequency
of hits to misses is called the hit ratio and it is represented as a percentage of the hits to
the total number of references made (Schimmel, 1994, p.27). If a hit occurs, the data is
returned to CPU. But the architecturally intriguing, although computationally taxing, case
is when a miss occurs. In this case, the address is passed to the main memory and the
data from the location is returned back to the CPU through the cache. This is done so
that future references will result in a hit (Schimmel, 1994, p.27).

On |A-32 processors, when the CPU requests for data or code and the cache lookup
results in a miss, the CPU has to arbitrate for ownership of FSB and, then, initiate a
memory transaction to access the data from main memory (Shanley, 2005, p.387).

The next section discusses the implementation of cache line which is the most funda-
mental unit of cache, like second being the unit of time.

12



4.1.1 Cache Line

A cache line is a group of one or more contiguous words of main memory that has an
associated tag which distinguishes itself. Hence, a cache consists of data and a tag
(Schimmel, 1994, p.28). Another parameter of a cache line is its line size which refers to
the number of bytes it holds. Since the data portion of a cache line contains contiguous
memory, it need only hold the first address as the addresses of the rest can be inferred
from the position of the respective data in the line (Schimmel, 1994, p.28).

Apart from this, the tag portion needs some mechanism to represent whether the data
which it holds is valid, as in if it actually reflects the data in memory. This is accomplished
with the help of a valid bit that tells whether or not the associated line is in use and
contains valid data (Schimmel, 1994, p.28).

”For a match to occur, the valid bit must be on and the tag must match” (Schimmel,
1994, p.28).

On 1A-32 processors, as discussed earlier, the cache is not only used to fetch data from
memory when requested but also to fetch data in case of a cache miss. The address
of the first byte stored in the data portion of the cache line always starts at an address
boundary that is evenly divisible by the cache line size (Shanley, 2005, p.388). When a
load miss happens, the requested data is routed to the processor’s execution unit, once
it is fetched and stored in the cache (Shanley, 2005, p.388).

Another flag that is used to represent whether or not the data in the cache line has been
modified is called a modified bit. This bit is used when the cache is configured as write-
back cache (Schimmel, 1994, p.28). This will be explained in detail later on.

When a cache miss occurs, data from the memory is used to replenish the entire cache
instead of the mere byte or word that the cpu needs (Schimmel, 1994, p.28). This is done
so as to exploit spatial locality of programs and modern systems are designed to read or
write multiple words at a time (Schimmel, 1994, p.28).

Some implementations of cache use very long cache lines such as 64B, 128B etc. so as
to reduce the memory required for the storage of tags since one tag now covers more
bytes in the data portion of memory (Schimmel, 1994, p.28). The disadvantage of this
approach is that now more bytes need to be transferred from memory to fill the respective
cache line. To mitigate the performance loss, some implementations divide the cache
lines further into multiple sublines each with its own valid bit (Schimmel, 1994, p.28).

Sublines, with their own valid bit, can be handled as if they were cache lines except
that there is only a single address tag covering all sublines in a line. And its position in
the cache line can be used to figure out the address of each subline (Schimmel, 1994,
p.29). However, this is an implementation detail which is almost always transparent to the
operating system (Schimmel, 1994, p.29).

Armed with the information related to implementation, operation of cache and write and
replacement policies are discussed next.

13



4.1.2 Cache in Operation

When the cpu requests data from the cache by passing the address over the address
lines, the speed at which the cache is searched is paramount, since, the whole purpose
of cache is to be faster than the main memory. Linear search algorithms are too slow so
they are only beneficial in very small caches (Schimmel, 1994, p.29).

Most caches use hash tables for searching. The search can be broken down to the
following: the address from the CPU is hashed to produce an index, this index is used
to access the hash bucket where the data is stored (Schimmel, 1994, p.29). As with any
hashing algorithm, different addresses will produce the same index so the time complexity
is not strictly O(1) all the time (Schimmel, 1994, p.29).

The tags at these locations have to compared with the address given by the CPU to find
the match (Schimmel, 1994, p.29). A hit occurs when the tag matches and otherwise it is
a miss. Since hashing limits the search to a small set of one ore more locations it is much
faster than linear search (Schimmel, 1994, p.29). All of this is done without any software
intervention.

The next section deals with what happens when the cache holds invalid data.

4.1.3 Replacement Policies

The data in the cache has to be discarded when the data in memory changes, during a
cache miss operation (Schimmel, 1994, p.29). The data to be discarded has to chosen
based on the replacement policy of the cache, which is implementation defined. Once the
data is selected, the respective cache line is replenished with new data and the address
in the tag is also updated (Schimmel, 1994, p.30).

Cache replacement policies have to be stateless since maintaining state inorder to update
cache is computationally taxing and not feasible in most systems (Schimmel, 1994, p.29).
Typical cache replacement policies include: Least Recently Used (LRU), pseudo-LRU
and random replacement (Schimmel, 1994, p.30).

The next section discusses the policies used by the cache when a store happens.

4.1.4 Write Policies

Write policies come into play when a store operation takes place. Most caches store the
data, during a store operation, into the cache directly so as to exploit temporal locality
since most of the time the data that is written is re-read (Schimmel, 1994, p.30). The
second reason is that cache is much faster than main memory so writing data to cache
is way more efficient (Schimmel, 1994, p.24). The cache’s write policy dictates when the
data is written back to main memory.

Initially, the cache is searched to see if the respective data is present. If a hit occurs,
the data in the cache is replaced with new data. As stated above, whether the new data
is written back depends on the write-policy (Schimmel, 1994, p.30). The two possible
write-policies are write-through and write-back.

4.1.41 Write-Through

If Write-Through policy (WT) is used, the data from the CPU is written to both cache and
main memory. It takes its name from the fact that writes have to go through the cache

14



into main memory (Schimmel, 1994, p.30). The advantage of this policy is that the cache
and main memory is always in sync as in data in the cache is identical to that in main
memory. The disadvantage is that a main memory cycle is used for every store operation
and, hence, is computationally taxing (Schimmel, 1994, p.31).

4.1.4.2 Write-Back

If Write-Back policy (WB) is used, data is written to cache but not to main memory until it is
forced out during line replacement or explicitly written to memory by the operating system
(Schimmel, 1994, p.31). Schimmel (1994) states that this avoids having to use a main
memory cycle after each store operation as the data can change any number of times in
the cache without any significant performance penalty. However, the disadvantage is that
the contents of main memory can become stale or inconsistent with respect to the cache.
Hence, operating system intervention is required to maintain coherency (Schimmel, 1994,

p.31).

Cache coherency is of significance especially in systems which have multiple processors
due to the presence of multiple observers of cache and memory. Although, in the case
of load operation, the stale value in memory will not be read since the cache will be
searched first and the latest value will be found (Schimmel, 1994, p.31).

The cache lines in WB caches can be replaced anytime due to a subsequent miss,
hence, the updated value in the line should be written to main memory before being
discarded. This is done transparently by the cache hardware without any OS interaction.
This warrants another bit called modified bit which is set when the cache line gets up-
dated (Schimmel, 1994, p.32). Schimmel (1994) states that it is cleared when the data
is written back to main memory. This makes it possible for the cache to write back only
those lines whose data portions have been updated. So the advantages of having WB
caches include: fewer main-memory operations, fewer bus operations and overall better
performance (Schimmel, 1994, p.32). The disadvantage is that from time to time the OS
will need to flush the cache inorder to maintain consistency (Schimmel, 1994, p.32).

When a cache miss occurs, the following write policies come into play.

4.1.4.3 Write-Allocate

Write-Allocate policy (WA) of cache comes into play when a store operation happens and
a cache miss occurs. In this case, if WA is used, the data is always written to the cache
by evicting data off a cache-line (Schimmel, 1994, p.32). In other words, the mechanism
to process a load/read miss is used to first bring data from main memory to cache.

Schimmel (1994) argues that the replacement policy searches for a cache line that can
be evicted to make room for new data. If the said cache line has the modified bit on,
it is written to main memory, in case of WB. Then the full cache line is read from main
memory into the cache and the data written by CPU is inserted into the line. However, if
the data written by the CPU is equal to the line size, the read from main memory can be
skipped since the entire line is going to be replaced by the data anyway. Otherwise the
modified bit is set, in case of WB, after the data is inserted into the cache line (Schimmel,
1994, p.33). An alternative to this is to just write the data directly to main memory. In
most cases, WB cache uses WA and WT cache does not owing to hardware cost.

15



4.1.5 Associative Cache

Associative caches are the most common kind found in IA32 processors (Shanley, 2005,
p.399). A direct mapped cache maintains a 1:1 relationship between the address of
the data in main memory and the location in cache (Schimmel, 1994, p.42). A two-way
associative cache produces a hash that resolves to a set of two lines in cache where the
data might be stored (Schimmel, 1994, p.42). A fully associative cache increases the size
of this set to include all the cache lines in cache (Schimmel, 1994, p.45). Hence, only
a single set exists in a fully associative cache and it includes all the lines in the cache
(Schimmel, 1994, p.45).

Such a design minimizes cache thrashing since the program will be able to achieve 100%
hit ratio if its locality of reference is less than or equal to the cache size (Schimmel, 1994,
p.45).

4.1.6 Cache Flushing

The OS usually takes the ability to remove the data from the cache for granted. And
the process of doing this is called cache flushing (Schimmel, 1994, p.46). This could
be necessary in case WB is used in order to maintain cache coherency/consistency.
Flushing can be accomplished in two ways: through validation of main memory and
invalidation of cache.

Schimmel (1994) argues that validation of main memory involves writing the modified data
in the write-back cache to main memory. This is done by the cache automatically when
a line is evicted and can be explicitly done by the OS so as to avoid other components
of the system that don’t use the cache from using stale data in main memory. An explicit
validation will write the data to main memory and turn off the modified bit in WB caches.
WT caches don’t need to worry about this case since the main memory is always in sync
with the cache (Schimmel, 1994, pp.46-47).

Invalidation of the cache involves discarding the data in the cache without writing it back
to main memory (Schimmel, 1994, pp.46-47). It can be used by WB and WT caches and
is used primarily in cases where the hardware fetches some data say from a network chip,
thereby, turning the data in cache stale. Invalidating it causes a cache miss forcing the
updated data from main memory to be read into the cache (Schimmel, 1994, pp.46-47).

Techniques used to improve Quality of Service, by providing cache prediction, isolation

and controlled sharing, were needed to avoid contention and this has lead to the emer-
gence of technologies such as CAT and CMT (Hendrich et al., 2016, p.1).

16



Chapter 5

Intel Resource Director Technology

IRDT provides a framework which helps with monitoring of shared resources such as
memory bandwidth, cache allocation as well as allocation of resources like L3/L2 cache(Intel,
2025a). Intel (2025a) argues that IRDT might help with performance interference espe-
cially in configurations where multiple OSes are running concurrently. This chapter talks
about the mechanisms provided by IRDT for the purpose of allocating and monitoring of
shared resources. It delves into the mechanisms used to program IRDT and talks about
the details pertaining to its sub-components such as CAT, CMT etc.

The following sections will focus on CAT, CMT, Memory Bandwidth Allocation (MBA) and
Memory Bandwidth Monitoring (MBM).

5.1 Cache Allocation Technology

CAT provides OSes or Hypervisors with a mechanism using which the amount of cache
used can be configured (Intel, 2025b, p.19-52). Depending on the microarchitecture of
the CPU, the last level cache can be of type: L2 or L3.

CAT enables applications with more stringent requirements for accessing the cache to
have privileged access to a predefined portion of last level cache. It also allows for dy-
namic resource management during runtime making it even more flexible (Intel, 2025b,
p.19-53). Additionally, this enables the user, be it OS/Hypervisor, of the system to rebal-
ance usage of resources to improve throughput (Intel, 2025b, p.19-53).

5.1.1 CAT Architecture

The basic functionality that CAT provides is the ability to join a Class of Service (CLOS)
which is a priority level (Intel, 2025b, p.19-53). CAT uses CLOS to give certain applica-
tions dedicated access to resources. There can be several different CLOS levels which
are exposed by the CPU so as to allow processes to join them (Intel, 2025b, p.19-53).
The allocated cache is determined by the specific CLOS used.

Each CLOS is configured using a Capability Bit Mask (CBM) that dictates the capacity of
cache which can be utilized and whether there is an overlap or split between the different
CLOS levels. Each logical processor has a set of registers which can be programmed so
as to join a specific CLOS (Intel, 2025b, p.19-53). CLOS usage is consistent across re-
sources and having multiple resource control attributes reduces software overhead during
context switch time (Intel, 2025b, p.19-53).

17



In short, CAT provides the ability:

* to discover if cache allocation is architecturally supported by the target cpu (Intel,
2025b, p.19-53).

* to learn about the kind of resources which can be made use of (Intel, 2025b, p.19-
53).

* to learn about CLOS levels supported and the length of CBM (Intel, 2025b, p.19-
53).

* to configure said CLOS using CBM (Intel, 2025b, p.19-53).

* to join a CLOS and check if it the join operation was successful (Intel, 2025b, p.19-
53).

5.1.2 Capability Bit Mask

CBM basically describes how much of the cache can be used for the specific CLOS (Intel,
2025b, p.19-54). The bits allocated in CBM, as stated by Intel (2025b), represent the
cache that can be used by said CLOS. It also provides a hint to the hardware regarding
overlap and isolation in cache. The length of CBM can be obtained by using the CPUID
instruction and will be explained in detail later.

CLOS |B6 | B5|B4|B3|B2|B1|BO
CLOSO | 1 1 1 1 1 1 1

Table 5.1: Default(Intel, 2025b, p.19-54)

The default bitmask contains all the bits implying the availability of the entire cache. By
default, all CPUs, which support CAT, will belong to CLOSO, thereby, sharing the entirety
of LLC. The next configuration that is discussed can be considered as a variant of the
default configuration, in the sense that multiple CPUs share the LLC.

CLOS | B6 | B5|B4|B3|B2|B1|BO
CLOS1| 0 | O | 1 1 1 1 1
cLos2| 0o 0| 0| 0| 1 1 1

Table 5.2: Overlap(Intel, 2025b, p.19-54)

The aforementioned set of CLOSes represents an overlapping configuration. CLOS1
allows access to a much more significant amount of cache than CLOS2. However, they
share some amount of cache. This allows for a nicer transition from CLOS1 to CLOS2 as
the entire cache doesn’t get flushed owing to the overlap.

The aforementioned set of CLOSes represents an isolated configuration since the CLOSes
are completely disjoint from each other. Transition from CLOS1 to CLOS2, in this case,
will be computationally taxing since the cache used by the client will have to be flushed.
In all the cases described above the length of CBM is 7.

Contiguous 1’ combinations is the only kind of value that is allowed to be used as CBM,
unless support for it is specified in CPUID enumeration (Intel, 2025b, p.19-54). A General

18



CLOS | B6 |B5|B4|B3|B2|B1|BO
CLOS1 | 0| O | O | 1 1 00
CLés2| 0| 0| O] O | 0|1 0
CLOS3| 0| O | O] O |O]O

Table 5.3: Isolated(Intel, 2025b, p.19-54)

protection fault (GP) is issued when an attempt is made to program a value that has non-
contiguous '1’s. The mapping between the bit in CBM and the respective amount of
cache is implementation-dependent (Intel, 2025b, p.19-54). A mask bit of '1” means that
the respective CLOS can allocate into the cache subset and a value of '0’ means it can't.

The following mechanisms are provided by CAT for the purpose of discovery, configura-
tion and usage:

5.1.3 Discovery

The discover phase includes enumeration of IRDT using CPUID instruction (Intel, 2025b,
p.19-58). Intel (2025b) states that support of CAT can be queried by software using
CPUID instruction with EAX register set to 07H and ECX register set to OH. The dynamics
of CPUID instruction will be discussed in detail later on. The CPUID leaf 10H can be used
to enumerate additional details of available resources.

CAT provides the following interface:

* Available resource types can be probed using the leaf function 10H of CPUID (Intel,
2025b, p.19-58).

» |IA32_L3_MASK_n represents the MSRs provided for storing CBM for each of the
CLOSes. The number of CLOSes supported can be obtained using CPUID instruc-
tion with EAX set to 10H and ECX set to ResID which will depend on the last level
cache used (Intel, 2025b, p.19-58).

» IA32_L2 MASK_ n represents the MSRs provided for storing CBM for each of the
CLOSes, thereby, providing access to L2 cache (Intel, 2025b, p.19-58).

* |A32_PQR_ASSOC.CLOS field of the respective MSR can be used to assign the
processor to the respective CLOS (Intel, 2025b, p.19-58).

The following sub-functions are provided by CPUID leaf 10H (Intel, 2025b, p.19-58):

The sub-function 0, which means EAX is set to 10H and ECX is set to OH, enumerates
the following resource types:

* Bit 1 - if set implies L3 Support
* Bit 2 - if set implies L2 Support
* Bit 3 - if set implies MBA Support

The resource ID obtained from this setup is used to get more information. Any sub-
function other than 0, that is sub-function 1 for L3 support, 2 for L2 support and 3 for
MBA support can be used to get the length of CBM (Intel, 2025b, p.19-59). Intel (2025b)
states that the Least significant 5 bits (0-4) of EAX incremented by one will give us the

19



length of CBM and that this mask is associated with the respective resource be it L3, L2
or MBA.

Sub-functions of CPUID 10H for the respective resource will provide more details such
as the length of CBM, the maximum number of CLOSes supported etc (Intel, 2025b,
p.19-59). Hence, software is responsible for querying the capabilities of each resource
ID found.

CPUID 10H sub-function 1 is used to enumerate L3 CAT capability (Intel, 2025b, p.19-59).
The value in EAX[4:0] is used to calculate the maximum length of CBM that is supported.
Using a length greater than what is supported will eventuate in GP being thrown by the
hardware. The value in EBX[31:0] represents the corresponding bitmask (Intel, 2025b,
p.19-59). As described earlier, each bit set in CBM will enable a certain amount of cache
to be allocated to the specific CPU. And each cleared bit in CBM represents a portion of
cache that is unavailable to the said CPU.

The bit in ECX[1] represents if L3 CAT support is available for non-CPU agents (Intel,
2025b, p.19-59).

The bit in ECX[2] represents support for Code and Data Prioritization technology (Intel,
2025b, p.19-60).

The bit in ECX][3] represents support for non-contiguous capacity bitmask (Intel, 2025b,
p.19-60). If this bit is set, use of non-contiguous CBM would not be illegal.

The value in EDX[15:0] represents the maximum number of CLOSes supported for the
specific resource, however, the former has to be incremented by 1 to get the actual value
(Intel, 2025b, p.19-60).

Extended properties of L2 can be enumerated in a similar fashion using sub-function 2
(Intel, 2025b, p.19-60).

Last but not least, migration of CLOS across logical processors will result in reduction
in performance of CAT as excessive time could be used for warming up the processor
caches after a migration (Intel, 2025b, p.19-61).

5.1.4 Configuration

Once the length of CBM and the maximum number of CLOSes are determined, the next
step is to program each CLOS with the respective CBM (Intel, 2025b, p.19-61). This
is done by writing the CBM to the respective the 1A32_L2/3_MASK_n register, where 'n’
corresponds to a number in the range of [0, max_clos - 1] (Intel, 2025b, p.19-61).

The next step involves setting up the CPU to use a specific CLOS. This is done by setting
the CLOS field of IA32_.PQR_ASSOC register. Each logical processor has an instance
of IA32_PQR_ASSOC register at location C8FH (Intel, 2025b, p.19-62). Bits 63:32 repre-
sents the CLOS field which is to be programmed with the right CLOS.

If IA32_.PQR_ASSOC is not set using the desired CLOS, then CLOSO is used by default ;
CLOSO has all 1s set so the entirety of last level cache is used (Intel, 2025b, p.19-62).

20



5.1.5 Usage

As discussed above, the CPU uses the respective CLOS written to its IA32_PQR_ASSOC
register and is allowed access to the respective portion of last level cache, as prescribed
by the CBM in the said CLOS. Apart from this, it is also possible to access and update
Intel Resource Director Technology Resources such as CAT in real-time.

Updating the registers is done using RDMSR and WRMSR instructions which are dis-
cussed in section 7.1.1.4. Writing to these MSRs will trigger a GP if one of the following
conditions occur:

* If one or more of the reserved bits are modified (Intel, 2025b, p.19-64).
« If a QOS mask outside the supported CLOS is accessed (Intel, 2025b, p.19-65).

+ If a value greater than the max CLOS supported is written to IA32_.PQR_ASSOC
register (Intel, 2025b, p.19-65).

Reading the IA32_PQR_ASSOC register will return the previously programmed CLOS (In-
tel, 2025b, p.19-65). As stated by Intel (2025b), reading the 1A32_L3/2_MASK_n register
will also return the previously programmed CBM.

5.2 Memory Bandwidth Allocation

MBA provides the user with the ability to compute and control the memory bandwidth
available per logical core (Intel, 2025b, p.19-66). Xeon Scalable Processor family was the
first to receive support for MBA (Intel, 2025b, p.19-66). It allows for control of applications
that could be over-utilizing memory bandwidth.

5.2.1 Discovery

The discovery phase includes IRDT enumeration which was described in the previous
chapter. Post execution of CPUID instruction with EAX set to 7H and ECX set to OH,
ECX.PQE (bit 15) is checked to see if the CPU supports software control over shared
resources (Intel, 2025b, p.19-66). CPUID sub-leaf 10H has to be further enumerated to
see if MBA is supported (Intel, 2025b, p.19-66).

Bit 3 of EBX register which is returned post enumeration of CPUID sub-leaf 10H will
determine if MBA is supported by the processor (Intel, 2025b, p.19-66). If MBA is sup-
ported, CPUID sub-leaf 10H can be further enumerated with EAX set to 10H and ECX
set to 3H which is the resource ID (Intel, 2025b, p.19-66).

EAX (bits 11:0) returned after CPUID(EAX=10H, ECX=3H), as described earlier, will pro-
vide the maximum MBA throttling value minus one (Intel, 2025b, p.19-66).

ECX (bit 2) provides whether the response of delay values is linear (Intel, 2025b, p.19-66).

EDX (bits 15:0) provides the number of CLOS supported for the feature minus one (Intel,
2025b, p.19-66).

21



5.2.2 Configuration and Usage

Association of threads to CLOS is accomplished the same way as CAT. Configuration of
per-CLOS delay values are accomplished via the 1A32_L2_QoS_Ext_BW _Thrtl_n registers
(Intel, 2025b, p.19-67).

The delay values shall be in the range [0, MAX_MBA] i.e a delay of 0 implies no delay or
full bandwidth and MAX_MBA implies maximum delay (Intel, 2025b, p.19-67). In a similar
vein as CAT, software is responsible for writing a specific delay value to
IA32_L2_QoS_Ext BW_Thrtl_n, thereby, updating the value applied to a specific CLOS
(Intel, 2025b, p.19-67).

22



5.3 Cache Monitoring Technology

Shared Resource Monitoring is another facility provided by IRDT. This is accomplished
with the help of Resource Monitoring ID (RMID) that is specific to a logical processor
(Intel, 2025b, p.19-45). RMID can be assigned to a logical processor or to a set of logical
processors which is something you would need in the case of monitoring an application
across multiple processors (Intel, 2025b, p.19-45). Only one RMID is active for each
logical processor and this is enforced using the MSR 1A32_PQR_ASSOC that was used
in CAT configuration (Intel, 2025b, p.19-45).

Support for monitoring shared resources, provided by the platform, enables tracking
cache metrics such as cache utilization and cache misses (Intel, 2025b, p.19-45). The
specific event types supported can be enumerated using CPUID instruction (Intel, 2025b,
p.19-45).

In short, CMT provides the following mechanisms:

» a mechanism to check if the platform supports CMT (Intel, 2025b, p.19-45).

+ CMT-specific event codes to read cache metrics (Intel, 2025b, p.19-45).

5.3.1 Discovery

Software is responsible for checking if the platform/CPU supports CMT by executing
CPUID instruction with EAX set to 07H and ECX set to OH (Intel, 2025b, p.19-46). If
the resultant EBX.PQM (bit 1) is set, the processor does provide support for shared re-
source monitoring like CMT (Intel, 2025b, p.19-46).

CPUID leaf function OFH provides details about the different resources types available
and which of them can be monitored (Intel, 2025b, p.19-46).

5.3.1.1 CMT

The following subsection is based on Intel (2025b, p.19-46). The following procedure is
to be performed for the discovery of CMT:

» So the first step is to execute CPUID instruction with EAX set to OH to discover
cpuid_maxleaf. This will help with further enumeration of CMT support.

« If cpuid_maxleaf > 7, then CPUID instruction with EAX set to 7H and ECX set to OH
is executed and the resultant EBX is checked for PQM (bit 12).

 If PQM is set, then CPUID instruction with EAX set to FH and ECX set to OH is
executed to query the shared resources available for monitoring.

* If L3 (bit 1) in resultant ECX is set, then CPUID instruction with EAX set to OFH and
ECX set to 1H is executed to query the L3 CAT/MBM capabilities available.

» Generally executing CPUID instruction with EAX set to OFH and ECX set to the
respective resource ID will enumerate the respective shared resource capabilities.

23



5.3.2 Configuration

The resultant EDX from executing CPUID instruction with EAX set to FH and ECX set to
OH can be used to determine if L3 CMT is supported (Intel, 2025b, p.19-47). Bit 1 in EDX
defines support for L3 monitoring support. Apart from this, the resultant EBX register
provides the highest RMID supported by the CPU (Intel, 2025b, p.19-47).

Executing CPUID instruction with EAX set to FH and ECX set to 1 (ResID for L3 CAT)
will eventuate in EBX providing the upscaling factor and ECX providing max RMID (Intel,
2025b, p.19-47). The resultant EDX will provide the different event types supported i.e.
bit 0 determines support for L3 Occupancy, bit 1 for L3 Total Bandwidth, bit 2 for L3 Local
Bandwidth.

Event Type Event ID | Context
L3 Cache Occupancy 01H CMT
L3 Total External Bandwidth 02H MBM
L3 Local External Bandwidth 03H MBM

Table 5.4: CMT Event Types(Intel, 2025b, p.19-49)

On CPUs which support Memory Bandwidth Monitoring, L3 Local and Total External
Bandwidth monitoring events are supported (Intel, 2025b, p.19-48). L3 total external
bandwidth monitoring event monitors L3 external bandwidth to the next level of cache i.e.
it helps with demand and prefetch misses from L3 to L2. This represents memory band-
width in most systems (Intel, 2025b, p.19-48). L3 local external bandwidth monitoring
event monitors L3 requests in systems with support for non-uniform memory architec-
ture (Intel, 2025b, p.19-48). It should be noted that local and total bandwidth cannot be
measured atomically; hence, it is possible for counters to change between reads (Intel,
2025b, p.19-48).

5.3.3 Usage

Firstly the following registers are used for the process of monitoring events:

* |A32_PQR_ASSOC.RMID is used to assign an RMID to a logical processor (Intel,
2025b, p.19-49). As discussed earlier, this basically distinguishes which thread or
set of threads uses the specific logical processor.

» IA32_.QM_EVTSEL is used to select a specific event type and the respective RMID
(Intel, 2025b, p.19-50).

* |[A32_QM_CTR is used to obtain the monitored data and also check for error condi-
tions (Intel, 2025b, p.19-50).

Once the discovery or enumeration of capabilities is done, the first step in the process of
using monitoring capabilities is to associate a given thread with an RMID (Intel, 2025b,
p.19-49).

The following paragraph is based on Intel (2025b, p.19-49). RMID, as the name sug-
gests, is an ID used by hardware to keep track of what the software wants it to moni-
tor. And the process of associating an RMID with a thread is the same for all shared
resources. As mentioned earlier, the MSR I1A32_ PQR_ASSOC is programmed with the
RMID that denotes the respective thread or set of threads. The hardware will use this

24



id to tag internal operations such as L3 cache requests. The width of the RMID field
in IA32_PQR_ASSOC can vary from one implementation to another and is derived from
ceil(loga(1 + CPUID.(EAX=FH, ECX=0H):EBX[31:0])). The value of IA32_.PQR_ASSOC
is always 0 after power-on.

As with CAT, the mechanism used to program CMT is exposed as an MSR pair. Reporting
of data is done on a per-RMID basis. This MSR pair is not shared with architectural
Perfmon counters (Intel, 2025b, p.19-50).

In order to successfully use CMT, the MSR pair, IA32_QM_EVTSEL and IA32.QM_CTR,
is used to initially program CMT and, then, retrieve the recorded data (Intel, 2025b, p.19-
50). Firstly, IA32_QM_EVT _SEL is used to select a specific event by writing an event id to
it. EvtID (bits 7:0), in IA32_.QM_EVTSEL, is used to specify the event (Intel, 2025b, p.19-
50). Once this is done, the next step is to configure RMID. RMID (bits 41:32) is used to
specify the respective RMID for which monitoring has to be done and the width of RMID
in IA32_.QM_EVTSEL should match that of IA32_ PQR_ASSOC (Intel, 2025b, p.19-50).

The following paragraph is based on Intel (2025b, p.19-50). I1A32_.QM_CTR is used to
report the monitored data. It has 3 bit fields which are used to signal various errors
which occur in case wrong event id is used in IA32_.QM_EVTSEL and in other unfavorable
conditions. ERROR field (bit 63) is set when an invalid event id is used. If UNAVAILABLE
field (bit 62) is set, it indicates that data is not available and the value in DATA field (bit
61:0) should be ignored. The OVERFLOW field (bit 61) is present if CPUID with EAX set
to FH and ECX set to 1H yields a resultant EAX with bit 8 set. In case this bit is set, it
indicates an overflow of MBM counters. The value from DATA field is converted to bytes
by multiplying it with the conversion factor which obtained from the resultant EBX of the
previous CPUID execution.

25



Chapter 6

Performance Monitoring Unit

Intel provides performance monitoring with the help of a set of performance-monitoring
Model-Specific Register (MSR) (Intel, 2025b, p.21-2). The PMU uses mechanisms for
monitoring events which are not available on all microarchitectures (Intel, 2025b, p.21-
2). However, newer Intel processors support enhanced architectural performance events
which are discussed in this paper.

Architectural performance events act consistently across microarchitectures (Intel, 2025b,
p.21-2). Like CAT and CMT, support for PMU is determined by exploring CPUID leaf 0AH
(Intel, 2025b, p.21-3). There are different versions of architectural support which are
available across processor implementations, for instance, Intel Core Solo and Intel Core
Duo processors support base level functionality identified by version ID of 1 (Intel, 2025b,
p.21-2). Intel Core and Xeon processors support version ID of 3 (Intel, 2025b, p.21-2).
Intel processors based on Skylake through Coffee Lake support version ID 4 and Ice
Lake supports version ID 5 (Intel, 2025b, p.21-2).

Although not a subcomponent of IRDT, PMU is explored for the sole reason of evaluating
cache hit ratio and, thereby, being able to provide some insight in cases which involve
target CPUs with no support for CMT.

6.1 Configuration

PMU is configured using event ids which correspond to architectural and non-architectural
events (Intel, 2025b, p.21-3). The number of performance event select MSRs
(IA32_PERFEVTSELYX) is finite and dependent on the platform; the result of a monitoring
event is reported in a performance monitoring counter MSR (IA32_PMCx) (Intel, 2025b,
p.21-3). As in the case of CMT, performance monitoring counters are paired with moni-
toring select registers to monitor resource usage.

Architectural performance monitoring select registers and counters have the following
properties (Intel, 2025b, p.21-3):

+ The bit field layout of IA32_ PERFEVTSELX is consistent across microarchitectures
and a non-zero write of an unsupported field introduced in a newer architectural
version results in GP (Intel, 2025b, p.21-3).

« Addresses of IA32_PMCx and IA32_PERFEVTSELx remain the same across mi-
croarchitectures (Intel, 2025b, p.21-3).

» Each logical processor has its own set of IA32_ PERFEVTSELx and IA32_PMCx
registers (Intel, 2025b, p.21-3). This simplifies the locking mechanism used in ICAT
which will be discussed in detail later.

26



6.2

Discovery

Architectural performance monitoring can be enumerated using CPUID mechanism (Intel,
2025b, p.21-3). Details such as the number of performance monitoring counters avail-
able in a logical processor, number of bits supported in each performance monitoring
counter and number of architectural performance events supported can be obtained by
this method (Intel, 2025b, p.21-3). CPUID leaf AH is used to enumerate the aforemen-
tioned features (Intel, 2025b, p.21-3).

6.2.1

Bit layout of IA32_ PERFEVTSEL MSR

The bit layout of IA32_PERFEVTSEL MSR can be summarized as shown below (Intel,
2025b, p.21-4):

Event Select field (bits 0:7) is the most important field owing to the fact that it is
used to select the desired event logic unit (Intel, 2025b, p.21-4). The set of values
is defined architecturally and will be discussed in the next section.

Unit Mask field (bits 8: 15) is used to set conditions that qualify the respective event
for detection (Intel, 2025b, p.21-4). Valid UMASK values for each event logic are
specific to the unit and described in the next section.

USR flag (bit 16) when set enables detection of the selected event when the log-
ical processor is operating in privilege levels 1-3 (Intel, 2025b, p.21-4). From the
perspective of PikeOS, this means that the selected event happening in userland is
taken into account. It can be used with OS flag (Intel, 2025b, p.21-4).

OS flag (bit 17) when set enables detection of the selected event when the logical
processor is operating in privilege levels 0 (Intel, 2025b, p.21-4). It can be used with
USR flag (Intel, 2025b, p.21-4).

E flag (edge detect) (bit 18) when set enables edge detection of the selected mi-
croarchitectural condition (Intel, 2025b, p.21-4). It basically counts the number of
deasserted to asserted transitions (Intel, 2025b, p.21-4).

PC flag (pin control) (bit 19) On Sandy Bridge microarchitecture, this bit is reserved.
On previous processors, the bit being set caused the processor to toggle PMi
pins and increment the counter when performance-monitoring events occurred and
when clear, toggled the PMi pins in case of counter overflow (Intel, 2025b, p.21-4).

INT (APIC interrupt enable) (bit 20) when set causes the logical processor to gener-
ate an exception throught its local APIC on counter overflow (Intel, 2025b, p.21-5).

EN (Enable Counters) (bit 22) when set enables performance counting. The event
logic unit for UMASK must be disabled before writing to IA32_PMCx (Intel, 2025b,
p.21-5).

INV (Invert) flag (bit 23) when set inverts the counter-mask comparison (Intel, 2025b,
p.21-5).

CMASK (Counter Mask) field (bits 24:31) - when this field is set, the CPU compares
this mask to the events counted and increments the counter if the count is greater
than/equal to this mask and ignores it otherwise (Intel, 2025b, p.21-5).

27



6.2.2 Pre-defined Architectural Performance Events

The following table lists the pre-defined architectural events which are used in ICAT (Intel,
2025b, p.21-19).

Event Name UMask | Event Select
Unhalted Core Cycles 0x00H 0x3CH
Instruction Retired 0x00H 0xCOH
Unhalted Reference Cycles | 0x01H 0x3CH
LLC Reference Ox4FH 0x2EH
LLC Misses 0x41H 0x2EH

Table 6.1: UMask and Event Select Encodings(Intel, 2025b, p.21-18)

» Unhalted Core Cycles - This event represents the cycles executed when a specific
core is running (Intel, 2025b, p.21-18). The counter is not incremented in the fol-
lowing cases: ACPI C-state other than CO, HLT instruction gets executed, STPCLK
pin is asserted, Throttling due to TM1 and during frequency switching phase of a
performance state transition (Intel, 2025b, p.21-18).

* Instructions Retired - This event represents the number of instructions at retirement
i.e. those that got executed already (Intel, 2025b, p.21-19).

» Unhalted Reference Cycles - This event represents the reference cycles counted at
a fixed frequency while the clock signal on the core is running (Intel, 2025b, p.21-
19). This event is not affected by core frequency changes (Intel, 2025b, p.21-19).

» Last Level Cache References - This event represents requests originating from the
core that reference last level cache line (Intel, 2025b, p.21-19). The event includes
speculation and cache line fills due to first level cache prefetcher (Intel, 2025b, p.21-
19).

» Last Level Cache Misses - This event represents last level cache misses (Intel,
2025b, p.21-19). The event may count speculation and cache line fills due to the
first level cache prefetcher (Intel, 2025b, p.21-19).

6.3 Usage

Post enumeration of PMU, armed with details about counters, their width and the archi-
tectural version, the next step is to configure IA32_PERFEVTSELXx MSRs. Once PER-
FEVTSELX registers are programmed, the next step is to read IA32_PMCx registers to
obtain the values reported by the corresponding counters (Intel, 2025b, p.21-3).

Armed with the knowledge of the programming environment, cache implementations and

architectural components which help with allocation and monitoring of shared resources
such as PMU, it is time to go ahead with the implementation details of ICAT.

28



Chapter 7

Implementation of ICAT

This section discusses the implementation of the driver ICAT and the details pertaining
to its design. It talks about the IOCTL interface which is exposed to userspace and the
different ways of using ICAT for the purpose of driving IRDT. Additionally, it talks about the
different modules which comprise ICAT and what each module drives. Apart from usage
and configuration, it illustrates how shared resources can be monitored and takes a shot
at cache statistics.

7.1 ICAT as a KDEV

ICAT is a kernel driver which handles the discovery, configuration and usage of IRDT on
PikeOS. It mainly focuses on CAT, and CMT due to the relevance of cache allocation and
the importance of determinism in mission-critical embedded systems. The rationale for
implementing such a driver is discussed in detail later on.

The availability of callbacks provided by PikeOS KDEV framework is the rationale for
writing ICAT as a kernel driver. As Liedtke (1995) argues, the only reason why a com-
ponent should be moved outside the kernel is if it wouldn’t prevent the component from
functioning properly otherwise. In this case, callbacks such as taskswitch cannot be
implemented in userspace since the driver framework doesn’t support this.

7.1.1 Modules

The driver consists of the following modules, each of which will be discussed in detail:
* irdt
« cat
« cmt
* log
s msr
* pmu

* main

29



main
pmu cat irdt cmt
msr

Figure 7.1: Structure of ICAT

The figure shown above depicts the dependency between the different modules of ICAT.
The code in ICAT is segregated based on the subcomponent that handles the respective
module, and the API it exposes. It also makes for a clean design.

7.1.1.1 Module: irdt

The file main.c ties all the modules together, hence, discussion about it will be deferred
until the very end. The first piece of code that was implemented was the logic which
enumerates the different subcomponents of IRDT, namely CAT, CMT, and MBA. This is
handled in the file irdt.c. The most important function in irdt.c is icatenumirdt(). The
function icatenumirdt utilizes the CPUID instruction to explore the various leafs and sub-
leafs pertaining to IRDT.

For instance, the following assembly code is written in C using inline assembly to do a
primary check on IRDT support.

eax = 0x7;

ecx = 0x0;

"mov %4,

"mov

"mowv

non
r

"$Seax",

(eax),

(eax),

____volatile___ (

%$%eax\n"

$%ecx\n"

$0\n"
$1\n"
%2\n"
$3\n"
"=r" (ebx),
"r" (ecx)

"o alhx" , "eaox" ,

Ny

"Sedx",

(ecx),

"=r" (edx)

"memory") ;

30




if ((ebx & (lu<<1l5))) {
LOG ("Intel RDT: Software control over"

"shared res supported\n");

if ((ebx & (1lu<<12))) {
LOG ("Intel RDT: CMT supported\n");
cmt = TRUE;
ic—>cmt = TRUE;

In this case, the CPUID leaf 7H sub-leaf OH is used to check if IRDT is supported. Once
the values 7H and OH are written to EAX, and ECX registers, the subsequent CPUID call
will return values in EAX, EBX, ECX, and EDX. EBX is checked for bit 15 which when
set implies that software control over shared resources is supported by the processor
(Intel, 2025b, p.3-229). The aforementioned CPUID mechanism is a common program-
ming pattern used through out ICAT for enumeration of various subcomponents. This
programming pattern will be, hereinafter, referred to as CPUID mechanism.

In a similar vein, EBX is checked for bit 12 which when set implies support for CMT. Once
this is done, the next CPUID leaf FH, and sub-leaf OH is enumerated to figure out the
width of rmid.

rmidwidth = ceillog2 (ebx+1);

The width of rmid is computed by taking the ceil value of log, (ebx+1). The implementation
of ceillog2() can only support values in the range of [0, 255], which in our case is more
than enough since rmid width rarely exceeds a value of 5, as observed in Intel Broadwell
microarchitecture.

Once, support for IRDT has been confirmed, the CPUID mechanism is used to enumer-
ate leaf FH, sub-leaf 1H. EDX is subsequently checked for bits 0, 1 and 2 that when
set implies support for L3 CMT, L3 total bandwidth monitoring, and L3 local bandwidth
monitoring respectively.

If support for CMT is reported, then ECX will contain the maximum value of rmid sup-
ported, and EBX will contain the upscale factor which is used in the computation of cache
usage . The code below reflects this:

if (cmt) {
maxrmid = ecx;

upscalefactor = ebx;

Subsequently, CPUID mechanism is used to enumerate leaf 10H, sub-leaf OH and EBX
is checked for bits 1, 2 and 3 that when set implies support for CAT on L3, L2, and MBA
respectively. This concludes the initial assessment of IRDT, and by using the information
obtained about CAT, CMT, and MBA, the enumeration of L3 CAT, L2 CAT, and MBA is
performed.

31



The functions enuml3(), enuml2() and enummba() handle the enumeration of respective
last level cache, and memory bandwidth allocation.

The function enuml3 uses the CPUID mechanism to enumerate leaf 10H, sub-leaf 1H,
and the resultant EAX is used to compute the max length of CBM. The computation is
done as shown below:

cbmlen = (eax & OxF) + 1;
ic—->cbmlen = cbmlen;

LOG("Intel RDT: L3 CBM Length: %u\n", cbmlen);

As shown above, the LSB of EAX is carved out, and incremented by one to obtain the
length of CBM. The next parameter that is essential for the configuration of CAT is the
maximum number of CLOSes supported. This is computed using EDX as shown below:

nclos = (edx & OxFF) + 1;

ic->nclos = nclos;

Once, the length of CBM and the number of CLOSes have been obtained, the number
of allocatable bits i.e. the number of bits in CBM that can be assigned a new value, is
obtained using the following code:

allocbit = numofzero (ebx, cbmlen);

ic—>allocbit = allocbit;

As shown above, the function humofzero() computes the number of contiguous zeros in
EBX which in effect represents the number of allocatable bits.

The function numofzero(), as shown below, loops through the bits in n starting from bit 0
to the limiting bit provided in max.

static P4_uint32_t
numofzero (P4_uint32_t n, P4_uint32_t max)

{
P4 _uint32_t r, t;

while (! (n & lu<<t)) {
++r;
++t;
if (t == max)
break;

return r;

32



As the name might suggest, the function enuml2() is analogous to enuml3() as it handles
L2 cache instead of L3.

The function enummba() uses the CPUID mechanism to enumerate leaf 10H, sub-leaf
3H and EAX is used to compute the maximum throttling value. This sums up the enumer-
ation phase of IRDT. Armed with the information obtained during this phase, ICAT tries to
provide a sane interface to the user for the configuration of CAT, CMT, PMU etc.

7.1.1.2 Module: cat

The file cat.c contains 5 functions: icatvalidconf(), icatsetupclos(), icatjoinclos(), icat-
getclos(), icatsetclos(). This module handles the configuration and setup of CAT in ICAT.
Inorder to describe the functions with clarity, a slight detour through config.h is necessary.

The file config.h consists of two arrays: closcbm and closcpu and a definition ICAT_NCPU.
These arrays represent the relationship between CLOSes, and their respective CBM, in
the case of closcbm, and the relationship between CLOSes, and their respective CPUs,
in the case of closcpu. This file is used for the static configuration of CAT in ICAT, and
the user is expected to configure the arrays, and ICAT_NCPU which represents the max-
imum number of CPUs in the system. The array closcbm uses its index semantically to
represent the CBM that belongs to the respective CLOS i.e. closcbm[0] represents the
CBM that belongs to CLOSO0 and this goes on for 1, 2, etc. Similary, the array closcpu
uses its index to represent the respective CPU to which the CLOS should be assigned
i.e closcpu[0] represents the index of closcbm which indirectly references the CBM that
will be assigned to CPUO. So, in effect, these two arrays illustrate the static relationship
between CLOSes, CBMs and CPUs.

The function icatvalidconf() validates the configuration file config.h. This is necessary
since invalid configuration should yield a panic during the initialization phase of the driver.
This is accomplished with the help of the PikeOS structure P4 kinfopage_t. This data
structure, which gets filled-in by PikeOS, can be used to figure out the number of CPUs
supported by PikeOS. This, in turn, is used by the function icatvalidconf() to check if
ICAT_NCPU provided by the user is valid. If it is not, the initialization of ICAT will fail. The
number of CPUs is used to validate the setup of closcpu as shown below:

if (ICAT_NCPU != kinfo->num_cpu) {
LOG ("ICAT_NCPU is found to be invalid\n");
LOG ("Number of CPU supported: %su"
"Kindly fix config.h\n",
kinfo->num_cpu) ;

return FALSE;

if (ICAT_NCPU != NELEM(closcpu)) {
LOG("closcpu[] is found to be invalid\n");
LOG ("Kindly provide CLOSes for exactly %u CPUs\n",
ICAT_NCPU) ;
return FALSE;
bi

33



Once the validation of number of CPUs, and maximum number of CLOSes is done, the
array closcpu is validated against the number of CPUs since each CPU should have a
valid CLOS assigned to it.

The function icatsetupclos() sets up the CLOSes supported by the processor using CBM
provided by the user. Firstly, the code uses the information provided by the module irdt
to determine if the last level cache is L3 or L2. Once this is determined, the respective
MSR is used i.e. IA32_L3_MSR_0 in the case of L3 and IA32_L2_MSR_0 in the case of L2.

Then it proceeds with the configuration of CLOSes using the value in allocatable bits
which was discovered during the enumeration phase and the CBM provided by the user.
It basically carves out the valid portion of CBM using allocatable bits and uses the function
icatwrmsr to write this value to the respective MSR. As mentioned in earlier chapters,
each CLOS has a specific MSR register so a loop is used to assign the CBM to the
respective CLOS. The code below reflects this logic:

for (P4_uint32_t i = 1; 1 < ic—->nclos; ++1) {

ecx = msr + 1ij;

icatrdmsr (ecx, &eax, &edx);

// calculate CBM
// Carve out relevant portion of closcbm[i]
msk = OXFFFFFFFF;

cbm = (closcbm[i] & "~ (msk << ic->allocbit));

// Assign new cbm
eax = cbm;

edx = 0;

// writemsr

icatwrmsr (ecx, eax, edx);

// Check again

icatrdmsr (ecx, &eax, &edx);

The function icatjoinclos() helps with associating the CPU with the respective CLOS. In
this function, IA32_PQR_ASSOC MSR is used to associate a CPU with the respective
CLOS. This MSR exists for each CPU; the function icatwrmsr() is used to associate the
CLOS provided by the array closcpul] with the respective CPU by writing to the MSR. The
code shown below reflects the same:

eax = 0;

IA32_PQOR_ASSOC;

ecx

edx = closcpulc];

icatwrmsr (ecx, eax, edx);

34



The functions icatgetclos() and icatsetclos() do what they say; they get and set the
respective CLOSes in the array closcpu].

7.1.1.3 Module: log

The file log.c contains the function icatlog() which prints logging information on the con-
sole. It uses a spinlock, thereby, making it safe(reentrant) to use even in a multi-threaded
environment. It uses the function psp_vprintf provided by PikeOS PSP to write to con-
sole.

7.1.1.4 Module: msr

Intel provides two instructions RDMSR and WRMSR to read and write from/to MSRs
(Intel, 2025b, p.4-542,6-9). The file msr.c contains the functions: icatwrmsr and ica-
trdmsr which essentially wraps RDMSR and WRMSR instructions. These functions take
3 arguments: ecx, eax, and edx which represent x86 registers of the same name.

RDMSR instruction is used to read the contents of the MSR which is specified in ECX
register and the value is returned using EDX and EAX registers. The least significant 32
bits are returned in EAX register and the most significant 32 bits in EDX register. Similarly,
WRMSR instruction is used to write a value contained in EAX and EDX registers to the
MSR specified in ECX register (Intel, 2025b, p.4-542,6-9).

7.1.1.5 Module: pmu

The file pmu.c contains the functions: icatenumpmu, icatinitpmu, icatreadpmu and
setevnt. The function icatenupmu uses the CPUID mechanism, as discussed earlier, to
enumerate leaf AH, sub-leaf OH and the resultant the LSB of EAX is used to figure out
the architectural version ID. The second byte of EAX is used to figure out the number of
counters supported by PMU in the respective platform. The third byte of EAX is used to
figure out the width of the PMC counter and the fourth byte to figure out the number of
architectural events. The code shown below reflects the same:

vid = eax & OXxFF;
LOG ("PMU: Architectural Version ID: %u\n", vid);

pmuconf.vid = vid;

ncounter = (eax & OxFF00) >> 8;
LOG ("PMU: Number of MSRs available: %u\n", ncounter);

pmuconf.nc = ncounter;

counterwid = (eax & OxFF0000) >> 16;
LOG ("PMU: Width of counter: %u\n", counterwid);

pmuconf.cw = counterwid;

nevent = (eax & OxFF000000) >> 24;
LOG ("PMU: Number of architectural events supported: %u\n",
nevent) ;

pmuconf.nev = nevent;

35



ICAT supports upto 4 pre-defined architectural events. However, all pre-defined archi-
tectural events are defined in the static data structure events, which is an array of struct
Icatperfevent whose members include evsel, umask, and name. This structure is defined
as shown below:

struct Icatperfevent {
/+ Event selector x/
P4_uint64_t evsel;
P4_uint64_t umask;
const char =*name;

i

/+ Pre—-defined Architectural Performance events =/
static Icatperfevent events[] = {
{0x3C, 0x0, "unhalted core cycles"},
{0xC0, 0x0, "inst retired"},
{0x3C, O0x1, "unhalted ref cycles"},
{0x2E, O0x4F, "llc ref"},
{0x2E, 0x41, "llc misses"},
{0xC4, 0x0, "br inst retired"},
{0xC5, 0x0, "br miss retired"},
{0xA4, O0x1, "topdown slots"},
{0xA4, 0x2, "topdown backend bound"},
{0x73, 0x0, "topdown bad speculation"},
{0x9C, 0Ox1l, "topdown frontend bound"},
{0xC2, 0x2, "topdown retiring"},
{0xE4, 0Ox1, "lbr inserts"}
}i

The function setevnt is used to setup the layout of IA32_PERFEVTSELx MSR. This func-
tion takes an argument which selects an event from events and use it to craft the layout
of IA32_PERFEVTSELx MSR. It handles USR flag, OS flag and EN flag which decides
whether events that happen userspace or kernelspace get recorded. By default, the ker-
nelspace events don’t cause the counters to increment. The code shown below reflects
the same:

36



static P4 _uint32_t
setevnt (P4_uint32_t 1)
{

P4_uint32_t eax;

eax = events[i].evsel;

eax |= events[i].umask << 8§;
eax |= IA32PERFES_USR;

eax |= IA32PERFES_EN;

return eax;

The function icatinitpmu() is used to initialize PMU using the information that was ob-
tained using the function icatenumpmu. This function sets up PMU by first calling
setevnt() function to craft a value suitable for IA32_PERFEVTSELx MSR and then it
used icatwrmst() to write the value to the respective MSR. This has to be done for each
event supported by ICAT and, hence, a loop is used to the same. The code shown below
reflects this logic:

/* Handle LLC refs and LLC misses x/
for (1 = 0; i < 2; 1i++) {
ecx = IA32PERFEVTSEL + 1i;

icatrdmsr (ecx, &eax, &edx);

eax = setevnt (3+1i);

edx = 0;

icatwrmsr (ecx, eax, edx);

icatrdmsr (ecx, &eax, &edx);

The aforementioned code is repeated to support events like Unhalted core cycles and
Instructions retired.

The function icatreadpmc() handles returning the value reported by IA32_PMCx coun-
ters. This function depends on icatinitpmu() since the initialization of IA32_PERFEVTSELx
MSRs influence the 1A32_PMCx counters which are read by icatreadpmec. As with
IA32_PERFEVTSELYX, there is a counter for each event which should be read and this
warrants a loop. The following code reflects this logic:

37



for (1 = 0; 1 < 2; i++) {
ecx = IA32_PMC + ij;
icatrdmsr (ecx, &eax, &edx);
if (1 == 1) {
*11lmiss = edx;
*1lmiss <<= 32;
x*1llmiss |= eax;
}
if (1 == 0) {
*1llref = edx;
*1llref <<= 32;

*1lref |= eax;

The counter width decides if there is a need to use two registers EAX and EDX to read the
reported value. The least significant 4 bytes are returned in EAX and the most significant
4 bytes in EDX. Hence, these two values are merged to find the actual reported value in
the respective counter. This is repeated for every event that was configured.

7.1.1.6 Module: cmt

The portion of code which enumerates CMT and its associated data structure is described
in section 7.1.1.7. Its configuration and usage is detailed in section 7.1.2.2.

7.1.1.7 Module: main

The file main.c ties all the modules described earlier to provide a programming interface
to the user for IRDT on PikeOS. Since ICAT is implemented as a kernel driver, it has
two ends with their own respective callbacks which have to be setup for functionality. As
discussed in Chapter 2, the provider callbacks are used by the PikeOS kernel to setup
the kernel driver and gate callbacks are used by the userspace to ask for services.

The provider callbacks used in ICAT include initprov(), initcpu(), initgate(), and taskswitch().
Each of these callbacks serves a purpose during the configuration phase. All of these
callbacks are assigned using an object of type drv_prov_ops_t and declared to the kernel,
using DRV_DECLARE_DRV.

static drv_prov_ops_t pops = {
.init_prov = initprov,
.init_gate = initgate,
.init_cpu = initcpu,

.alert_task_switch = taskswitch,
bi
DRV_DECLARE_DRV (icat, &pops);

38



The callback function initprov is used for the initialization of various data structures in
ICAT. Data structures defined in ICAT include the following:

struct Icatconf {
/* Number of CLOS */
P4 _uint32_t nclos;
/+* CBM length =*/
P4 _uint32_t cbmlen;
/* Allocatable bits in CBM =/
P4 uint32_t allocbit;
/* LLC type =*/
P4_uint32_t llctype;
/* L3/L2 support =/
P4_bool_t 1llc;
/% L3/L2 CDP support =/
P4_bool_t llccdp;
/* CMT Support =/
P4_bool_t cmt;

i

The aforementioned structure is used to store the configuration of CAT.

struct Icatcmtconf {
/* Max rmid */
P4 _uint32_t maxrmid;
/* Rmid width =/
P4 uint32_t rmidwid;
/+ Upscale factor =/
P4_uint32_t upscalef;
}i

The aforementioned structure is used to store the configuration of CMT.

39



struct Gatepriv {
P4_glock_t gl;
/x array for llc usage stats =*/
P4_uint64_t llcusage[l6];
/* points to the next free element of llcusage x*/
P4 _uint64_t *1llcu;
/* enough samples to use for avg/sd */
P4_bool_t llces;
/* Resource Monitoring ID =/
P4 uint32_t rmid;
/* CPUID =/
P4_uint32_t cpuid;
P4_uint32_t padding;
bi

The aforementioned structure is used to store the state of certain fields which belong to
the respective gate.

The function initprov initializes the spin lock used for the purpose of logging called llock
and one for accessing a shared data structure called tlock. The design of ICAT forbids a
gate descriptor from being used by another CPU other than the one that opened it. Apart
from that, it allocates some memory for an object of type Icatconf which holds the state
of CAT internally. This is done using drv_calloc() function. Since drv_calloc will panic if
enough kernel memory is not available, the return value is not checked. The code below
reflects the same:

conf = drv_calloc(l, sizeof (xconf), DRV_PART_GLOBAL);

Once this is done, icatenumirdt() is called to enumerate IRDT and the details obtained
is stored in conf. Subsequently, a check is done to ensure that some kind of last level
cache, be it L3 or L2, is supported before validating the configuration provided using
the file config.h. As discussed earlier, an invalid configuration is considered fatal and a
valid configuration will eventuate in the code calling icatsetupclos to setup the respective
CLOSes. This is done strictly owing to the hardware raising GP fault in case of invalid
configuration from which recovery is not possible. The code shown below reflects this
logic:

if (conf->1lc) {
if (!'icatvalidconf (conf)) {
return P4_E_CONFIG;
}

icatsetupclos (conf);

Support for CMT is then checked and, if found, the function icatcmtinfo is used to retrieve
it and store the state of CMT in an object of type Icatcmtconf. Another data structure of

40



importance is the array tasks which maps the task id with RMID. The size of tasks is
determined by the maximum rmid that is supported by the CPU. This data structure is
allocated using drv_calloc and is assigned an invalid value of 256. Valid PikeOS task IDs
that range from 0 to 255 is the rationale for choosing the former value. The code shown
below reflects this logic:

#define INVALTASK 256

if (conf->cmt) {
icatcmtinfo (&cmtconf) ;
tasks = drv_calloc (cmtconf.maxrmid,
sizeof (unsigned int),
DRV_PART_GLOBAL) ;
for (unsigned int i = 0; 1 < cmtconf.maxrmid; i++)

tasks[i] = INVALTASK;

Lastly, the function icatenumpmu is called to enumerate PMU. Once this is done, the
function returns an error code of P4_E_OK, which represents success. Since initprov is
serialized by the KDEV framework, no other locking is necessary.

The function initgate() initializes the data structure Gatepriv which is stored in the private
area of the per-gate data structure drv_gate_t. Initialization of the former includes allocat-
ing memory using drv_calloc, initializing the lock using p4_glock_init and initializing its
members. An object of type Gatepriv has the following members:

» g/ which is a lock used for the purpose of concurrency.
* llcusage which is an array that is used to store cache statistics.
* llcu which is a pointer to the next free element of licusage.

* llces which is a flag that ensures that a minimum number of samples of cache usage
is available for the purpose of computation of average and standard deviation.

» rmid which is the rmid assigned for the respective task.

 cpuid which is the cpuid of the task.

ICAT is designed in such a way that the cache statistics is associated with a specific task
which in effect is associated with a RMID. Once the gate is opened, the gate effectively
is married to the specific CPUID. It is illegal to use a gate descriptor from another CPU.
This decision was made by fiat owing to the adverse repercussions such as the cache
statistics becoming stale in its entirety for a different CPU.

Once the initialization of data structure is done, the function getgatepriv() is used to
assign the object to the private area of the gate. The code shown below reflects this
logic:

gp = drv_calloc(l, sizeof (Gatepriv), DRV_PART_GLOBAL);
p4_glock_init (&gp->gl);

gp—>1llcu = gp—>llcusage;

gp—>1llces = FALSE;

xgetgatepriv(g) = gp;

41



The callback function initcpu() is used to setup the logical processors using the CLOSes
that are statically configured in the file config.h. This callback is called by the KDEV
framework on every CPU. In fact, this is the last callback in the init phase that is serialized
by default by the KDEV framework. In this function, a check is made to ensure that CAT
is supported and this is done by checking /llc which is set during the enumeration phase.
Once it is validated to be set, the function icatjoinclos is called on the CPU to join the
respective CLOS. The code shown below depicts the same:

P4_cpuid_t cpuid;
cpuid = p4_my_cpuid();
if (conf->1lc)

icatjoinclos (cpuid) ;

return P4_FE_OK;

The callback function taskswitch() is used to improve the precision with which cache
measurement is done. This is primarily done because a logical processor can execute
more than one task. When a task is preempted and the scheduler starts running another
task, the RMID, stored in IA32_.PQR_ASSOC MSR, needs to be updated using that of
the new task. Failing to do so will result in incorrect cache measurements reported by
CMT. This update mechanism is abstracted away in the function assocrmid. The latter
will be discussed in detail later on. In taskswitch(), a check is made to ensure that CMT
is supported. If it is not, the function returns. A lock is used subsequently to protect
accesses to the data structure tasks which can be updated concurrently. The function
taskid2rmid() is called to obtain the RMID of the respective task and if a valid RMID is
found, the CPU is updated with it using assocrmid. The code shown below reflects this
logic:

int rmid;

if (!'conf->cmt)

return;
P4_spin_lock (&tlock);
rmid = taskid2rmid(t);
P4_spin_unlock (&tlock) ;
if (rmid == -1)

return;

assocrmid ((P4_uint32_t)rmid) ;

Thus ends the init provider callback section. The next section deals with 3 important
callbacks required for almost every driver: open(), close(), and ioctl().

The function open() is called when the user uses vm_open() to open the device ICAT.
This function basically sets up the cpuid member of the gate’s private data structure. As
discussed earlier, this is done so that the gate descriptor is not used by any other CPU.
The code below reflects this logic:

42



Gatepriv =*gp;

gp = *getgatepriv(gd->gate);

gp—>cpuid = p4_my_cpuid();

The function close() is a placeholder since there isn’t much to be done.

7.1.2 I0OCTL interface

Last but not least, the function ioctl() handles the lion’s share of ICAT’s API. This function
provides 4 commands: ICAT_ASSOC, ICAT_MON, ICAT_STAT and ICAT_JOIN; some of
these commands require a certain order of execution to behave as intended and provide
useful information.

7.1.2.1 ICAT_ASSOC

This command is most likely the first to be used since the IOCTL interface is only used
when the user would like to configure ICAT during runtime or for the explicit purpose of
instrumentation and analysis. For the latter, the first step involves associating the RMID
with the specific task and this is handled by ICAT_ASSOC. ICAT_ASSOC expects the user
to provide the TASK ID which is passed through by the KDEV framework in the argument
indata. This is copied from userspace to kernelspace using the function drv_memcpy_in
and provided to the respective switch case. The code below reflects the same:

if (indata != NULL

&& (e = drv_memcpy_in(&ics, indata, sizeof(ics))) != P4_E_OK) {
LOG ("drv_memcpy_in failed: %s\n", p4_strerror(e));
return P4_FE_PAGEFAULT;

The data structure used by the user for purpose of making IOCTL calls to ICAT is shown
below:

struct icatstat {
/+ Cache usage 1in bytes =/
P4 _uint64_t cu;
/* Average/Mean cache usage =*/
P4_uint64_t cm;
/* Standard deviation =/
P4 _sint64_t sd;

/* perfevents

* [0] = unhalted core cycles
* [1] = inst retired

* [3] = 1llc refs

* [4] = 1llc misses

*/

43



P4 _uint64_t events[13];
P4_uint32_t rmid;
P4 uint32_t clos;
P4_task_t tid;
P4_uint32_t padding;

}i

As shown above, it consists of members that are used by ICAT to provide cache statistics
such cache usage, average cache usage, standard deviation, and properties associated
with the configuration such as RMID, TASK ID and CLOS to which the respective CPU
belongs. However, not all of these members are used in the case of most IOCTL com-
mands.

ICAT_ASSOC basically checks if CMT is available, if it is not, the entire setup of RMID is
skipped and PMU is configured. However, if this is not the case, a glock is used to enter
a critical region where the next available RMID is checked against the maximum RMID
supported. This is a static variable and is incremented post use. If the check is found to
be positive then a return value of P4_E_LIMIT is returned only after glock is given back.
The code shown below reflects this logic:

if (!'conf->cmt) {
LOGVV ("CMT not supported\n");
goto trypmul;

p4_glock_enter (&gp->gl);

if (rmid > cmtconf.maxrmid) {
LOG ("ASSOC failed: rmids have been exhausted\n");
pr4_glock_leave (&gp—>gl);
return P4_E_LIMIT;

After checking the next available RMID, a spin lock is used to set the respective TASK
ID in the array tasks. The location at which the TASK ID is stored depends on the value
of RMID. This abstraction makes access to TASK ID an O(1) operation. The spin lock is
used here since the shared array tasks is used in the callback function taskswitch where
the former is used to retrieve the RMID and associate it with the CPU. There can be upto
N CPUs, in a platform that supports a maximum of N CPUs, trying to access this array at
anytime. Once this is done, the lock is given away and the function assocrmid is used to
write the respective RMID to IA32_PQR_ASSOC MSR of the respective CPU. The code
shown below reflects the same:

p4_spin_lock (&tlock);
tasks[rmid++] = ics.tid;
P4_spin_unlock (&tlock);
gp—>rmid = rmid - 1;

assocrmid (gp—>rmid) ;

44



This concludes the setup of CMT. Once this is done, PMU is initialized using the function
icatinitpmu() as discussed earlier. If PMU is found to be not supported along with CMT,
a return code of P4_E_NOTIMPL is returned to the user. The code shown below reflects
the same:

trypmul:
if (icatinitpmu()) {
LOGVV ("PMU not supported\n");
if (!'conf->cmt) {
p4_glock_leave (&gp—>gl);
return P4_FE_NOTIMPL;

7.1.2.2 ICAT_MON

The command ICAT_MON is used to monitor the cache usage using CMT and PMU. As
with ICAT_ASSOC, the first thing that is done is check if CMT is supported. If it is not,
control is handed off to a section which uses PMU for cache measurement. Otherwise,
the cache usage provided reported by CMT is obtained using the IA32_.QM_EVTSEL
MSR. The event EVENT_L3_CMT is used along with the respective RMID to obtain the
cache usage in bytes. The reported usage is also stored in the array /lcu for further
analysis. Once this is done, the function icatreadpmc is used to read the last level
cache misses and references and all these data points are returned to the user using the
structure icatstat. The code shown below reflects the same:

if (!conf->cmt) {

goto trypmuZz;

/+ Check L3 cache usage using CMT x/

ecx = IA32_QM_EVTSEL;

icatrdmsr (ecx, &eax, &edx);

eax = P4_BIC(eax, (1 << 8)-1) | EVENT_L3_CMT;
P4_BIC(edx, (1 << 10)-1) | gp->rmid;

edx
icatwrmsr (ecx, eax, edx);

icatrdmsr (ecx, &eax, &edx);

ecx = IA32_QM_CTR;

icatrdmsr (ecx, &eax, &edx);

if (! (edx & ((P4_uint32_t)1l << 31))
&& !(edx & ((P4_uint32_t)1 << 30))) {
cu = cacheusage (eax, edx);

gp—->cpuid, cu/KB);
}
*gp—>1llcu++ = cu;

45



/* Works like a ring buffer =*/

if (gp—->1llcu == gp->llcusage + NELEM(gp—->llcusage)) {
gp—>1llcu = gp—>llcusage;
gp—>1llces = TRUE;

trypmu?2:
if (icatreadpmc (&llcref, &llcmiss)) {
if (!conf->cmt)
return P4_E_NOTIMPL;
}

As with ICAT_ASSOC, if CMT and PMU are not supported, a return code of P4_E -
NOTIMPL is returned. PMU being supported architecturally on most CPUs and, hence,
being more likely to be present is the rationale behind this logic. This command shall
only be used after ICAT_ASSOC, since in order for CMT to report a measurement, the
CPU has to be associated with the respective RMID. However, if CMT is not supported or
not of any significance to the user, one can use ICAT_ASSOC to read PMC counters for
misses and references.

7.1.2.3 ICAT_STAT

This command is used to provide some statistical analysis of the measurements obtained.
It uses two functions to accomplish this: mean() to compute average mean and sd to
compute standard deviation. Both of these attributes are computed using the cache
usage entries reported by CMT. So, if CMT is not supported, this ioctl command will
return P4_E_NOTIMPL. It shall also provide other details like the current RMID, CLOS etc
to the user. The code shown below reflects the same:

if (!conf->cmt) {

return P4_E_NOTIMPL;

if (!gp—>1llces) {
return P4_E_STATE;
}
a = mean(gp—>llcusage, NELEM(gp—->llcusage));
sd = stddev (gp->1llcusage, NELEM(gp->llcusage), a/KB);

ics.rmid = gp->rmid;
ics.cm = a;

ics.sd = sd;

ics.clos = icatgetclos (gp—>cpuid);

46



As shown above, the entries obtained from /lcu are used for obtaining the averge mean
and standard deviation. The flag llces is used to check if there are enough samples to
perform this computation. If there is not, an error message is printed on console, and
an error code of P4_E_STATE is returned to the user. This is owing to the fact that the
algorithm implemented relies on the existence at least N samples. The code below shows
the algorithm which computes standard deviation:

s = 0;

for (unsigned int i = 0; i < n; i++) {
d = a[i1]/KB - mean;
s t= d * d;

}

s = s/n;

LOGVV ("Variance (KB) : %u\n", s);

return isqgrt(s);

As with ICAT_MON, this command shall only be used after setting up the RMID using
ICAT_ASSOC. It cannot be used in any other context, since it depends predominantly on
the existence of CMT, and the cache usage entries reported by the same. Additionally, the
user is expected to collect at least N usage entries, usually 32, by using ICAT_MON before
invoking ICAT_STAT for the purpose of obtaining mean, standard deviation etc. The array
llcusage along with the pointer /lcu basically acts like a ring buffer, since it wraps around
once the last element is encountered. This is done due to the fact the algorithm only
cares about newer data and stale data can be overwritten, thereby, re-using the storage.

7.1.2.4 ICAT_JOIN

Last but not least is the command ICAT _JOIN and it is used to coerce the CPU into joining
a specific CLOS at runtime. This can definitely impact performance as observed empir-
ically. So, unless it is absolutely warranted, usage of this command is advised against.
Joining a CLOS in runtime is done by writing the desired CLOS to IA32_.PQR_ASSOC.
The code shown below reflects the same:

if (ics.clos >= conf->nclos) {
return P4_E_CONFIG;

}

ecx = IA32_PQR_ASSOC;

icatrdmsr (ecx, &eax, &edx);

eax = 0;
edx = ics.clos;

icatwrmsr (ecx, eax, edx);

icatrdmsr (ecx, &eax, &edx);

icatsetclos (gp—>cpuid, ics.clos);

As shown above, if an invalid CLOS is provided by the user, an error code of P4_E_CONFIG
is returned.

The next section describes proposed usage of ICAT and caveats of certain use-cases.

47



7.1.3 Use Cases

As with any driver, there is some initial setup required with respect to configuration of
ICAT. This includes providing the process with access to the file "icat:”, which denotes the
kernel driver itself, in VMIT. Once this is done, ICAT can be opened, one or more ioctl
commands can be performed and, eventually, closed.

7.1.3.1 Initial discovery

In this specific use-case, ICAT is used to discover the components of IRDT supported by
the platform. In order, to accomplish this, all that needs to be done is build the driver with
verbose flag set, fuse it with the kernel and run the executable obtained on the platform.
This should yield a report akin to the following:

icat: Initializing provider

icat: Intel RDT: Software control over shared res supported
icat: Intel RDT: L2 CAT supported

icat: Intel RDT: L2 CAT/CDP supported

icat: Intel RDT: L2 CBM Length: 4

icat: Intel RDT: L2 CLOS Length: 8

icat: Intel RDT: L2 CBM: O

icat: CLOS setup done

icat: PMU: Architectural Version ID:LOS setup done
icat: PMU: Architectural Version ID: 5

icat: PMU: Number of MSRs available: 8

icat: PMU: Width of counter: 48

icat: PMU: Number of architectural events supported: 8

Figure 7.2: Discovery of ICAT

7.1.3.2 Static Configuration

In this specific use-case, ICAT is configured statically using the file config.h. As described
earlier, the arrays closcpu and closcbm are configured with the respective CBMs and
CLOSes which will be used by ICAT to setup the CPUs with respective access to LLC.
This is the most straightforward of use-cases and requires no programming at all.

7.1.3.3 Analysis of cache usage

In this specific use-case, although config.h is configured so that the CPUs join their re-
spective CLOSes, a userlevel application is supposed to be analyzed for its cache usage.
This is done by first opening ICAT using the following call:

vm_open ("icat0:0", VM_O_RD|VM_O_WR, &fdl);

Once this call succeeds, then an ioctl call is made using the command ICAT_ASSOC to
associate the RMID with the CPU. And this is done as shown below:

48



ics.tid = p4_my_task();
vm_ioctl (&fdl, ICAT_ASSOC, &ics);

Care should be taken to set tid using p4_my_task() since ICAT expects this to be set by
the user. Then, ICAT_MON can be used to calculate the cache usage as shown below:

vm_ioctl (&fdl, ICAT_MON, &ics);

This will, ultimately, return the respective RMID, cache usage provided by CMT and PMU
events such as LLC references and misses. This data point will serve as an initial read.
After this, the specific piece of code which should be analyzed can be run followed by
another call to ICAT_MON which will provide another data point. Using these data points,
one can analyze the cache used and the cache hit ratio.

Another possibility of usage exists if the average cache usage is required along with the
standard deviation. This can be done by using ICAT _STAT call as shown below:

vm_ioctl (&fdl, ICAT_STAT, &ics);

As discussed earlier, this call will return the average cache used and the standard devi-
ation of the set of samples that ICAT has obtained. Care should be taken to ensure that
enough samples are taken using ICAT_MON before invoking ICAT _STAT.

7.1.3.4 Dynamic configuration

In this specific use-case, a static configuration was used initially to setup the respective
CLOSes and CPUs. Eventually, need has arisen to join a different CLOS which might be
inferior or superior to the current CLOS. In this case, the CLOS has to be first setup and
then ICAT_JOIN ioctl is used to join the respective CLOS as shown below:

ics.clos = 10;

vm_ioctl (&fdl, ICAT_JOIN, &ics);

As with all functions provided by the system, the return value of vm_open, vm_close and
vm_ioctl should be checked for errors and the file icat.h provides the respective data
structure that is to be used with ioctl calls.

7.1.3.5 Caveats

There is a use-case which IRDT allows for, however, is not implemented in ICAT that this
section talks about. This is the case of a uniprocessor PikeOS installation which runs
more than one task, each of which requires different CLOS setup. This configuration was
ignored not because of compatibility reasons but because of the fact that each time a
context switch happens, a new CLOS must be joined for the respective task, and this
by default invalidates the data in the cache and, thus, gets flushed. This leads to a
significant performance drop since each context switch requires further cache warming
before moderate performance can be attained. And this usually happens so frequently
that the net effect would be of a machine that has none or significantly smaller amount of
cache. Hence, this use-case was deliberately discarded.

49



Chapter 8

Evaluation of ICAT

This chapter deals with the empirical analysis of LLC usage and behavior of ICAT on
x86_64 microarchitectures, namely, Broadwell and Tiger Lake. It elaborates on the results
of the proposed use-cases which were detailed in the previous chapter and draws some
conclusion based on the data obtained.

Allocation of last level cache, L3 and L2, brought about some interesting results. Firstly,
L3 cache on Intel Broadwell microarchitecture was tested to see if increasing CBM actu-
ally increased the amount of the LLC that was allocated for use to the specific CPU. The
graph shown below illustrates this:

Allocation of L3 LLC vs CBM (overlapping)

T T T T

g:;gg | -8 Cache Allocated ‘:
4,756 f
4,256 - .
3,756 f
3,256 .
2,756 f
2,256 .
1,756 f
1,256 | f

756 |- s

256

L3 Allocation in KB

R T N S IR N R
01 2 3 45 6 7 8 9 101112
CBM

Figure 8.1: Allocation of L3 LLC vs CBM (overlapping)

50



CBM | Cache Usage in KB
Ox1 512
0x3 1024
0x7 1536
OxF 2048

Ox1F 2560

Ox3F 3072

Ox7F 3584

OxFF 4096

Ox1FF 4608
Ox3FF 5120

Figure 8.2: CBM (overlapping) and L3 LLC usage

In this experiment, a range of CBMs starting with 0x1 to Ox3FF were supplied using
a static configuration. In order to exhaust the cache, 30MB of data was copied from
uncached memory which was used as heap. This experiment was then conducted for
each of the CBMs and the cache usage was recorded using CMT. Using the most minimal
CBM, 0x1, a cache usage of 512KB was recorded and the maximum, Ox3FF, yielded
5120KB of allocatable cache.

As depicted by the plot, using a higher number of bits in CBM effectively increases the
amount of cache available to the respective CPU. The resultant usage of cache was
obtained using CMT by utilizing the ioctl command ICAT_MON. This substantiates that
CAT/CMT can be used to allocate and monitor shared resources like LLC on PikeOS
using ICAT.

The case of using isolated bits in CBM is more interesting. One might be inclined to
think that one bit, set anywhere in CBM, would allocate the same amount of cache. This
would, however, be a mistake since the position of the bit in CBM is just as important
as the number of bits. The following table provides us with the relationship between the
position of a single bit in CBM and the allocated LLC, on broadwell microarchitecture.

CBM | Cache Usage in KB
Ox1 512
0x2 1024
Ox4 1536
0x8 2048

0x10 2560

0x20 3072

0x40 3584

0x80 4096

0x100 4608
0x200 5120

Figure 8.3: CBM (isolated) and L3 LLC usage

51



In this experiment, L2 CAT support of ICAT was exercised. However, the target used for
this test, which belongs to Tiger Lake microarchitecture, did not support CMT. Hence, a
different approach was taken using PMU to draw a conclusion based on cache hit ratio.
The plot below illustrates this:

L2 LLC Hits vs CBM
80 T T I T
—&- Avg. Cache Hits

L2 Cache Hits
N ~
o [an)
T T
| |

(@)
(aw]
T
|

40

Figure 8.4: L2 LLC Hits vs CBM

Iteration | CBM | Avg. L2 LLC Hits
1 0x01 58
2 0x03 43
3 0x07 71
4 O0xOF 52

Figure 8.5: CBM and L2 LLC Hits

In this experiment, the cache was exhausted by copying data to/from uncached mem-
ory used as heap. However, CMT could not be used to measure the amount of cache
available for allocation.

This plot, however, didn’t end up as telling as the one above. As illustrated by the plot,
improvement of cache hit ratio does not only depend on the amount of cache available
but also on the code used. In this specific case, it increases when using 3 bits of CBM,
seems to be moderate when using 1 or 4 bits and degrades when using 2 bits of CBM.
This result should not be considered to be reflective of the performance of the application
in any definitive degree, since PMU is not considered to be entirely reliable for the purpose
of statistical analysis, as is done here.

This experiment exercises changing of CLOS in run-time to check if it actually yields the
intended effect. The plot below illustrates this:

52



Allocation of L3 LLC vs Isolated CLOS
77400 T T T T T T T T T T

—— Cache Allocated

:lk
e
(@)
[a)

T
!

L3 Allocation in KB
vC«O
S
o
(@)
T
|

\ ! ! H ! \ ! ! ! \ \
01 2 3 4 5 6 7 8 9 1011 12
Iteration

Figure 8.6: Allocation of L3 LLC vs Isolated CLOS

lteration | CBM | Cache Usage in KB
1 0x30 1024
2 0x30 1024
3 0x30 1024
4 OxOF 1024
5 OxOF 3584
6 OxOF 3584
7 OxOF 3584
8 Ox0F 3584

Figure 8.7: CBM (Isolated) and L3 LLC usage

As you can see, changing CLOS in runtime affects the performance by momentarily in-
validating and flushing the cache, although this is done transparently by the hardware. In
this case, two isolated CBMs were used and iterations 1-3 were conducted using CLOSH1,
CBM: 0x30, which had less bits set in CBM than CLOS2, CBM: 0x0OF. The IOCTL cmd
ICAT _JOIN was used to switch from CLOS1 to CLOS2 after iteration 3 which should have
lead to improved performance. However, this change in CLOS does not come in effect
right away instead the performance suffers as shown in iteration 4. Subsequently, the
cache gets warmed up and further iterations, 5-8, show expected usage of LLC. How-
ever, the case of overlapping CLOSes is a bit different and is illustrated below:

53



Allocation of L3 LLC vs Overlapping CLOS
77400 T T T T I T T T T T T

6.400 | —&— Cache Allocated |

5,400 |- :
4,400

3,400 |-

2,400 | i

L3 Allocation in KB

1,400

408 B | | | | | | | | |
4 5 6 7 8 9 10 11 12
lteration

o
—_
Y=
w -

Figure 8.8: Allocation of L3 LLC vs Overlapping CLOS

Iteration | CBM | Cache Usage in KB
1 0x3F 3072
2 0x3F 3072
3 0x3F 3072
4 Ox7F 3072
5 O0x7F 3584
6 0x7F 3584
7 0x7F 3584
8 0x7F 3584

Figure 8.9: CBM (Overlapping) and L3 LLC usage

As you can see in this case, since the CLOSes were overlapping, the cache usage merely
stays the same after the CLOS transition that happens after iteration 3. Hence, iteration
4 shows the same cache usage as iteration 3, and, the amount of allocatable cache
increases in iteration 5 as expected.

The next experiment demonstrates the noisy-neighbor scenario and deals with 2 applica-

tions trying to access LLC run on CPU1 and CPU2, respectively, both utilizing the default
CBM of OxFFF.

54



lteration

Cache Usage in KB

S D ©© o NNOOOOOOADROONDND-= =

CPU | CBM
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
2 | OXFFF
1 | OXFFF
1 | OXFFF

2800
0
2928
2928
2928
3024
2944
3024
3024
3040
3040
3040
3072
3088
3088
3104
3088
3216
3104
3360

Figure 8.10: lteration vs L3 LLC usage (without CAT)

Iteration vs LLC usage

7,400

6,400
5,400 |
4,400 [
3,400

2,400 |

L3 Allocation in KB

1,400 |

T T T T T T
—= CPUA1
—=-CPU2 ||

408*
0

L1 \ |
1 2 3 4 5 6 7 8 9 1011 12

lteration

Figure 8.11: Noisy-neighbor scenario - problem

As you can see in this case, both CPUs are trying to allocate as much as possible causing
contention. This can be solved using ICAT by choosing different CBMs. In the case
shown below, CPU 2 utilizes a CBM of 0x3F and CPU 1 utilizes the default CBM of
OxFFF, thereby, giving CPU1 access to more cache.

55



lteration | CPU | CBM | Cache Usage in KB

1 1 OxFFF 112
1 2 O0x3F 0

2 1 OxFFF 3424
2 2 O0x3F 1440
3 1 OxFFF 4032
3 2 O0x3F 1440
4 1 OxFFF 4256
4 2 0x3F 1520
5 1 OxFFF 4480
5 2 Ox3F 1520
6 1 OxFFF 4528
6 2 Ox3F 1520
7 1 OxFFF 4560
7 2 0x3F 1520
8 1 OxFFF 4560
8 2 Ox3F 1600
9 1 OxFFF 4576
9 2 Ox3F 1616
10 1 OxFFF 4592
10 1 O0x3F 3072

Figure 8.12: lteration vs L3 LLC usage (with CAT)

Iteration vs LLC usage
77400 T T T T T T T T T T
—= CPUA1
—=— CPU2
5,400 |- -

6,400

4,400 | i
3,400

2,400 | |

L3 Allocation in KB

1,400 | .

| | | | | | | | | |
01 2 3 4 5 6 7 8 9 10 11 12
lteration

400 |- N
0

Figure 8.13: Noisy-neighbor scenario - solution

Another important observation was that CLOSO has access to even more cache than that
can be allocated using CAT. As it was observed in the discovery phase, on our target, the
length of CBM supported is 12 bits, however, the number of allocatable bits is 10. There
are 2 bits which were filled, by default, usually assigned to the graphics engine or other

56



hardware units (Intel, 2025b, p. 19-59). However, this extra cache can be utilized by
CPUs which use the default CLOSO0. In our experiments, it was possible to allocate upto
6144KB of LLC on broadwell microarchitecture using CLOSO.

57



Chapter 9

Conclusion

The research done has resulted in the implementation of ICAT on PikeOS. As described
in previous chapters, the driver ICAT was able to expose an APIl which makes use of
various subcomponents of IRDT such as CAT, CMT etc. as well as generic architectural
components such as PMU. It was possible to analyse use-cases of ICAT and caveats
arising from certain design choices. The implemented prototype is available upon re-
quest.

Implementation of ICAT has opened the doors to mechanisms which can make use of
IRDT for various purposes on PikeOS such as optimization of application, optimization
of stacks such as network stack, analysis of software behavior from the perspective of
shared resources such as cache and memory, improving WCET analysis by being able
to predict cache content, adherence to avionics standards etc.

In short, it was possible to show that IRDT can be utilized in real-time operating systems
like PikeOS for the purpose of allocating and monitoring shared resources. The driver
helped with being able to ensure that PikeOS can comply with the strict regulations of
embedded systems imposed by avionic standards as described by Jean et al. (2012),
ultimately, contributing to the field of Real-Time OS and Systems Research.

9.0.1 Future Work

There exists a possibility of allocating another shared resource, namely, memory band-
width, which is of importance in a SMP environment. Memory bandwidth, as described by
Jean et al. (2012, p.56), is the maximum amount of data that the memory bus can handle
at a point in time. Shanley (2005, p.839) states that the FSB is what connects the proces-
sor with other devices on x86 platforms; embedded systems which run critical software
should be wary of applications which over-utilize the bandwidth of this bus. As stated by
Jean et al. (2012, p.57), one of the approaches that can be pursued is to schedule the
applications accordingly so as to not exhaust the bandwidth. However, another approach
is to utilize MBA, which is a sub-component of IRDT, to allocate memory bandwidth to
specific CPUs which run applications with higher levels of criticality. Although ICAT han-
dles the discovery of MBA, the logic for allocation and monitoring is not implemented
yet. Extending ICAT to handle MBA/MBM would be beneficial to PikeOS for deterministic
analysis of software which is important in real-time environments as well as for reducing
interference from neighboring partitions.

58



Bibliography

Schimmel, C. (1994) Unix Systems for Modern Architectures, Boston, Addison—Wesley

Shanley, T. (2005) The Unabridged Pentium 4: 1A32 Processor Genealogy, Boston, Ad-
dison—Wesley

SYSGO GmbH (2025a), PikeOS Kernel Reference Manual Version: D5.1-312, SYSGO
GmbH, Mainz

SYSGO GmbH (2025b), PikeOS Platform Manual for x86-amd64 Boards Version: D5.1-
618, SYSGO GmbH, Mainz

SYSGO GmbH (2025c), PikeOS PSP and KDEV Developer’s Guide Version: D5.1-318,
SYSGO GmbH, Mainz

SYSGO GmbH (2025d), PikeOS User Manual Version: D5.1-1153, SYSGO GmbH,
Mainz

Neville-Neil, G., McKusick, M., and Watson, R.N.M, (2004) The Design and Implementa-
tion of the FreeBSD Operating System (2nd Edition), Boston, Addison—Wesley

Sloss, A.N. (2004) ARM system developer’s guide, Massachusetts, Morgan Kaufmann
Publishers

Intel Corp. (2015), Improving Real-Time Performance by Utilizing Cache
Allocation  Technology, Doc  Version: 331843-001US, Available at:
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-
allocation-technology-white-paper.pdf

Intel Corp. (2025a), Intel® Resource Director Technology Framework, Available
at:  https://www.intel.com/content/www/us/en/architecture-and-technology/resource-
director-technology.html [Accessed 29 April 2025]

Intel Corp. (2025b), Intel® 64 and [|A-32 Architectures Software De-
veloper’s Manual, Doc Version: 325462-085US, Available at:
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Liedtke, J. (1995) On p-Kernel Construction, In Proceedings of the fifteenth
ACM symposium on Operating systems principles (SOSP °’95). Association
for Computing Machinery, New York, NY, USA, pp.237-250, Available at:
https://doi.org/10.1145/224056.224075

Jean, X., Gatti, M., Berthon, G., Fumey, M. (2012) MULCORS Project: The Use of Multi-
core Processors in Airborne Systems, Rev. 07, France: Thales Avionics

Selfa, V., Sahuquillo, J., Eeckhout, L., Petit, S., Gémez, M. E. (2017), Applica-
tion Clustering Policies to Address System Fairness with Intel's Cache Alloca-
tion Technology 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Portland, OR, USA, pp. 194-205, Available at:
https://doi.org/10.1109/PACT.2017.19



Kim, Y., More, A., Shriver, E., and Rosing, T. (2019), Application Performance Prediction
and Optimization Under Cache Allocation Technology, 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE), Florence, Italy, pp. 1285-1288, Available at:
https://doi.org/10.23919/DATE.2019.8715259

Farshin, A., Roozbeh, A., Maguire, G.Q., and Kosti¢, D. (2019), Make the Most out of Last
Level Cache in Intel Processors, In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys ’19), Association for Computing Machinery, New York, NY, USA, Article
8, pp.1—17, Available at: https://doi.org/10.1145/3302424.3303977

Kaiser, R., and Wagner, S. (2007), Evolution of the PikeOS Microkernel, MIKES 2007
First International Workshop on Microkernels for Embedded Systems, pp. 50-56, Avail-
able at: https://www.researchgate.net/publication/285592141_Evolution_of_the_PikeOS
_Microkernel

Institute of Electrical and Electronics Engineers (2004), IEEE Std 1003.13-2003 (Revision
of IEEE Std 1003.13-1998): Institute of Electrical and Electronics Engineers

ARINC (2010), Avionics Application Software Standard Interface: ARINC Specification
653 Part 1, Required Services

Lorido-Botran, T., Huerta, S., Tomas, L., Tordsson, J., & Sanz, B. (2017),
An unsupervised approach to online noisy-neighbor detection in cloud
data centers, Expert Systems with Applications, pp. 188-204, Available at:
https://doi.org/10.1016/j.eswa.2017.07.038

Straumann, T. (2001), Open Source Real Time Operating Systems Overview, SSRL,
Menlo Park, USA, Available at: https://doi.org/10.48550/arXiv.cs/0111035

Guan, F, Peng, L., Perneel, L., & Timmerman, M. (2016), Open Source FreeRTOS as
a case study in real-time operating system evolution, The Journal of Systems and
Software, pp.19-35, Available at: https://doi.org/10.1016/j.eswa.2017.07.038

Hendrich, A., Verplanke, E., Autee, P, lllikkal, R., Gianos, C., Singhal, R. & lyer, R. (2016),
Cache QoS: From Concept to Reality in the Intel® Xeon® Processor E5- 2600 v3
Product Family, 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), Available at: https://doi.org/10.1109/HPCA.2016.7446102



Declaration of Authenticity

I, Naveen Narayanan, hereby declare that the work presented herein is my own work
completed without the use of any aids other than those listed. Any material from other
sources or works done by others has been given due acknowledgement and listed in the
reference section. Sentences or parts of sentences quoted literally are marked as quota-
tions; identification of other references with regard to the statement and scope of the work
is quoted. The work presented herein has not been published or submitted elsewhere for
assessment in the same or a similar form. | will retain a copy of this assignment until after
the Board of Examiners has published the results, which | will make available on request.



